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ANALYSIS OF A LIMITING-AMPLITUDE PROBLEM
IN ACOUSTO-ELASTIC INTERACTIONS, I

1. INTRODUCTION

We are concerned here with the correct formulation and the solution of a boundary and interface
problem in elliptic partial differential equations that models the physical setting of certain steady-state,
or time-harmonic, fluid-elastic interactions. Specifically, we consider an elastic shell-like body immersed
in a homogeneous, inviscid fluid of unbounded extent in all directions. The entire continuum is assumed
to be driven by the action of certain known, externally applied sources of energy generating an acoustic
disturbance propagating in the fluid and forces applied to the surface(s) and the bulk of the elastic body.
These sources sustaining the motion are supposed to begin at some instant and thereafter approach harmonic
time-dependence, with a common angular frequency, and we assume that the induced fields of response in
the fluid and elastic media exhibit the same qualitative sort of temporal behavior as the process evolves. We
set the problem of determining the time-harmonic parts of these resultant fields, paying particular attention
to the solution for the field in the fluid and its far-field pattern. To this end, we must first ensure that
we formulate a mathematical model problem having as its unique solution precisely the desired limiting-
amplitude fields and then show how to set up a convergent scheme for their numerical approximation.

Thus, we are examining a simplified version of the problem that must be addressed whenever one wishes
to predict the sound field that is both radiated and scattered by, say, a vibrating metal structure submerged
in an ocean in which there is also propagating an acoustic wave originating from other sources. That is,
the setting described is essentially a first approximation to that prevailing in a broad range of technical
questions of fundamental significance to the Navy, including direct problems of design and inverse problems
of detection. It is evident that a thorough investigation of the solution of the simplified problem posed will
be invaluable as a guide in attacking the study of more realistic models incorporating the effects of spatially
varying fluid properties and the presence of air-fluid and earth-fluid interfaces.

While the developments of the subsequent sections are conducted in a systematic manner, to avoid ob-
scuring the basic issues in this introductory section on motivation and orientation we shall be intentionally
rather cavalier vis-a-vis matters of precision and complete specification of hypotheses. Consider a homoge-
neous and isotropic elastic medium, with Lam6 parameters A > 0 and p > 0 and density Q,, occupying the
closure Q0 of a bounded and (for simplicity) connected open set Q0 in R3 . The restrictions specified for
the Lam6 parameters are equivalent to the reasonable requirements that Young's modulus be positive and
Poisson's ratio be nonnegative and less than one half. We suppose for now that the boundary IF = &Q, of
Q£ is "smooth," and denote by no the normal field of unit magnitude on P0 that is "directed into the exterior
of Q0 ." The complement R3 \ ,, which need not be connected, is decomposed into its open connected com-
ponents and written as Q+ U Q., with Q+ representing the single unbounded component and Q_ denoting
the union of the (finite number of) bounded components. In case Q_ is the empty set, or, as we prefer to
say here (for a reason that will soon be apparent), "absent," one should make the obvious adjustments in
the reasoning. We write . = 8QL and F+ = a8+, so that F = r U 1'+, and indicate by n- and n+ the
restrictions of n 0 to r. and r+, respectively. A homogeneous fluid is supposed to fill Q+; while this fluid
is modeled as inviscid, it is assumed that it may possess some mechanism for internal damping, so that the
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ALLAN G. DALLAS

propagation of small disturbances in the fluid is governed by the "damped" wave equation. The density of
the quiescent fluid is designated by e+, its characteristic phase speed of small disturbances by c+, and the
damping constant by y+, with 7+ > 0. Actually, we shall carry along the hypothesis that 7+ can take on
certain complex values by supposing that

7+ { z E C Ieither z = 0 or Re z > 0,

although an appropriate physical interpretation is not clear when Imp+ 5 0. The set Q_, accounting for
any "cavities" within the elastic medium, is taken as evacuated (i.e., containing no material); if some other
continuum were postulated to lie in Q_, there would be introduced certain additional complexities that we
wish to avoid in the present exposition.

Prior to some time to, say, to = 0, we suppose that the system rests in a state of equilibrium in which
the pressure in the fluid has the constant value po throughout Q+ and no body-force field is applied to any
portion of either medium. Then, reckoned relative to the in vacuo position of the elastic body, the static,
or quiescent, elastic displacement field Uo: O, - R 3 satisfies

AA* pU° = in Qo, 11

Tn+[Uo] =-pon+, on 1+, (1.2)

and

T`- [Uo] = 0, on r. (1.3)

(conditions serving to characterize Uo only to within an added rigid-displacement field). Here, the operator
/ A*, is given by

^ A := -icurl curl + (A + 2,u)grad div;

in terms of the Cartesian components (Uj) of a vector-valued field U, the Cartesian components of AA U

then appear as

A PU)j = pAUj + (A + p)Uk,kj,

with A := divgrad denoting the Laplacian (acting on scalar fields) and a comma signifying partial differ-
entiation with respect to the Cartesian coordinates indicated by the following subscripts. Here and in the
sequel, the conventions of the index notation are in force, with the range of all free and summed indices to
be understood as {1, 2, 3}. By introducing the (Cartesian components of the) strain tensor corresponding to
a field U in Q, according to

Ejk[U] := 2(Ujk + Ukj) (1.4)

and, in turn, the (Cartesian components of the) stress tensor generated by U as

Orjk[U] := Aeuj[U]6jk + 2e6jk[U], (1.5)

6jk being the Kronecker symbol, the traction field T n[U] induced by U on rO is defined as having the
Cartesian components given by

(Tn, [U])j := Ujk[U]Ironok, (1.6)

(no, no2 , no3) denoting Cartesian components of no, when the traces Oejk[U] Ir, exist in an appropriate sense.
Recall that Tn' [U] represents physically the tractions exerted on the elastic material in ?iO by agents lying
outside that set. In (1.2) and (1.3) we have indicated by Tn+ [Uo] and Tn- [Uo] the restrictions of Tno [U0 ]
to P+ and to F, respectively.
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Subsequent to the time to = 0, we assume that various externally impressed disturbing agents begin
smoothly to act on, and in a neighborhood of, the elastic body, viz., tractions applied to both the vacuum-
elastic boundary r and the fluid-elastic interface r, a body-force field within Q2, and an "incident field"
propagating in the fluid contained in 9+. Henceforth, we shall consider all scalar fields as C-valued (C
denoting the complex numbers), all vector fields as C3 -valued; the corresponding fields of physical significance
are then to be obtained by taking the real parts (when 7+ is real). Points of R4 we write in the form (x, X4 ),
with x = (X1 , X2, X3) E R3 and X4 e R; the operators curl, grad, and div, when applied to appropriate
fields defined on a cylinder such as QO x R in R4 , shall be interpreted as acting in the "spatial variables"
only. Thus, we are given vector-valued fields To: r, x R -* C3 and F0 : Q. x R -+ C3 , smooth in their
fourth arguments, and satisfying T,(.,t) = 0 on F0 and F(., t) = 0 in Q,, for t < 0. Consistently, as we
have done for n. and Tno[Uo], when f, is some (scalar- or vector-valued) field on To, we shall denote by
f- and f+ its restrictions to rI and F+, respectively, i.e., fp := frIF±, the notation gjF being reserved
throughout to indicate the restriction of the function g to the subset F of its domain. Thus, we write, e.g.,
T-(.,t) := T,(.,t)lr- and T+(.,t) := T.(.,t)lr+. To describe the fluid incident field, we suppose that
there is specified an open subset Q' of R3 containing the elastic body along with its cavities, i.e., containing
Q- U Q, and a smooth scalar field VD: Q' x R -e C, the velocity potential of a disturbance that would
propagate in Q' if no elastic medium were present and the fluid were to fill all of £'. Then 1' is to satisfy

t(-, t) = 0 in Q' whenever t < 0 and

40 + c + c = 0 in Q' x R. (1.7)

We are implying here that any "sources" sustaining the disturbance represented by Ad are situated outside
£' (and so, in particular, outside the elastic medium). In terms of this velocity potential, the incident
particle-velocity field V' and the incident acoustic, or excess, pressure field P' are defined in Q' x R by

1
Vat :=--grad(D' (1.8)

(again, with the gradient operator acting in the spatial variables alone), and

P' := C,4 + +t'; (1.9)

we shall use the corresponding rules of calculation when defining the velocity and pressure fields induced in
the fluid by any other velocity potential, as well.

In the full space-time formulation, for the determination of the resultant motion of the entire continuum
in response to these specified disturbances, we would then wish to find a vector (elastic-displacement) field
U: Q,, x R -* C 3 and a scalar (fluid-velocity-potential) field -b Q+ x R -* C satisfying, in an appropriate
sense, the hyperbolic partial differential equations

-A-b + + c2 44 = ° in Q+ X R, (1.10)

and

-A U + 0o U, 44 = F,, in £. x R, (1.11)

the initial conditions

4D(-, t) = 0 in£2+ )
for t < 0, (1.12)

U(y t) = 0 in £o )

3
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the interface conditions

den+ e+U,4 Ir+ n+ =-Vm+ 3 } on r+ x R, (1.13)
Tn+[U] + (0,41r+ + 7y+,Ilr,)n+ = T+- (,41r+ + 7+1VIr+)n+,

and the boundary condition

Tn-[U] = T_, on rL x R. (1.14)

Here, ( )II + denotes a trace, and (*)X,+ denotes a normal derivative on r+ (taken with respect to the spatial
variables at a fixed time), while a b := akbk for elements a = (al, a2 , a3) and b = (bl, b2, b3) of C3. The
equalities in (1.10) through (1.14) result upon first setting down the conditions to be fulfilled by the state of
the medium when the elastic-displacement field is calculated relative to the in vacuo position of the elastic
body and then employing (1.1) through (1.3) to remove the appearance of the state of prestress induced
by the constant pressure po. Thus, U represents the perturbation-displacement field of the elastic medium,
taken relative to its quiescent position of equilibrium at times preceding to, the displacements relative to
its in vacuo position being given by U + U0 , with Uo as described above. The velocity potential 41 has no
intrinsic physical interpretation when V1 is nonzero. Rather, it is the sum <D + '1 in (Q+ n Q£2) x R that
describes the disturbance propagating in the fluid (the state of the fluid being obtained by superposition of
this perturbation onto the quiescent state with constant pressure p0); when there are neither tractions To
impressed upon r, nor a body force Fo acting in Q£, it is customary to refer to 1D as the velocity potential
of the "scattered field" corresponding to the incident-field velocity potential 4'I. The fulfilment of the first
of conditions (1.13) ensures the continuity of the normal component of the continuum velocity on r+ (which
is the most that can be demanded, in view of the inviscid nature of the fluid), while the satisfaction of the
second condition in (1.13) provides for the continuity of the continuum tractions on r+. Of course, with
a x b denoting the vector product of a and b in C3 , from (1.13) we have

n+ x Tn+[U] = n+ x T+, on r+ x R,

so that the tangential component of Tn+ [U] on r+ vanishes if T+ is a normal field on r+; this result is also
due to the inviscidity of the fluid.

Now, to pose the problem of present interest, let us consider the special circumstance in which the
impressed traction and body-force fields asymptotically approach harmonic time-dependence, of angular
frequency w > 0, on the respective spatial parts of their domains of definition as t -* oc, while the fluid-
incident-field velocity potential displays such behavior in a neighborhood of Q£ U£2,. In such a case, we can

write

To(., t) = Tr(., t) + t,(.)eiwt on Fo for t E R, (1.15)

F,,(., t) = Fo(., t) + f,(.)e-iWt in Q£ for t e R, (1.16)

and

(DI(., t) = 4I T (., t) + So1 He-iWt in £2' for t E R, (1.17)

wherein Q£ UQ, C £2 C Q', and the functions T'(-,t), F'(.,t), and V T (., t), along with sufficiently many of
their derivatives, vanish on their respective domains in the limit as t - oo, while to, fo, and So' are certain
known (spatially dependent) complex amplitudes. Again, we write T (-,t) := To(-,t)lrI and t± := tol+±.
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Then, from (1.7), under appropriate conditions of transience of this sort for 4bt and of smoothness for A',
the latter function must satisfy

Atp' + (w(w + i7 +)) ( - O in Qz',

or

inkyI + Xc2+t = in QY, (1.18)

in which

K+ =-K+(w; C+,w7+) : ( , C '. (1.19).

Here and throughout, (.)112 V/'7 denotes the principal branch of the square-root function: when z is real
and nonnegative, z1/2 is the nonnegative square root of z, and then, in general, ? 1/ 2 :- $zj1/2 exp(i arg z/2),
with arg z e (-Hr, 7r] indicating the principal argument of z E C. Thus, tc+(w; c+, 0) = w/c+. If Re y+ > 0,
then the principal argument of w(w + iy+)/c' lies in (0, 7r), since

w(w + id+) = w(w - Im-+) + ibRe y+,

and so its principal square root ,+ (w; c+, 7y+) has positive real and imaginary parts. Explicitly, setting

R+ = R+ (w, /+) Re -y+7 ) if(w- m±+)$0,

we find that

I K/W((W- +) = 21{1+[1+R2+]/2}1/2 + iR + +

if (w -I m7+) > 0, (1.20)

+ Cc+ \/ 2 { {1 + [1 + R2j2/2 }+1/2

if (w - Im +) < 0, (1.20)2

and

Kc+ (w;c+ 7 =(I + i) wRe 7 if (w - Imp+) = 0. (1.20)3
(L; +-Y)= C ± ~ 2

In view of (1.8) and (1.9), V' and P' then have in Q' x R the same form of a time-transient superimposed
upon a time-harmonic contribution, the complex amplitude of the latter deriving from i': for every t, in £2'

we have

VI (,t) --grad ¢D(., t) - -grad 4(.)eiwt
and

PI(_, t ) = +14( , t) + y+ 4 (, t ) + (D T- i t() e

5
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Pursuant to these hypotheses, and supposing that there exists a corresponding unique pair (U, 4)) satisfying
(1.10) through (1.14), we further make the fundamental assumption that the latter functions have the forms

U(.,t) = UT (.,t) + u(.)e-iwt in P. for t E R (1.21)
and

= $r(-,t) + soQ)e$i in Q+ for t e R, (1.22)

wherein Ur and 'Vl are "sufficiently weak transients," i.e., vanish, along with certain of their derivatives,
in a sufficiently strong sense as t -* oo. In this setting, our objective is the determination of the assumed-
to-exist "complex limiting amplitudes" u in Q,, and so in Q+; in particular, we wish first to formulate a
boundary and interface problem for elliptic partial differential equations in Q,, U Q+ that completely and
directly characterizes the latter spatially dependent fields, to determine when this problem is well-posed in a
reasonable sense, and subsequently to show how one can construct sequences of approximations converging
in a useful manner to the solution (when the problem is well-posed). As a preview, we note at this point
that the desire to account for the effect of driving fields such as T,, and F, introduces into the correct
formulation of the problem governing the steady-state behavior peculiar features that are not of concern
when it is supposed that only a fluid-incident-field velocity potential bV is present to sustain the motion.
For example, one would hope th 4 t the data of the correct steady-state problem comprise merely the limiting
amplitudes t,, f,, and so', along with the angular frequency w, the underlying geometry, and the material
(constitutive) parameters, i.e., that the limiting amplitudes u and So can be characterized without knowledge
of the transients Tr, Fr, and 'Ir acting during the evolution from the quiescent state. Perhaps surprisingly,
this is evidently not the case; in general, one must know To and F;, although <'r is not required. We shall
return to this matter shortly.

It is necessary to proceed through the examination of the original space-time formulation to identify
the correct time-independent problem to be studied for the determination of the limiting amplitudes of the
response, essentially because there is a possible loss of the unique-solution property in a too-naive passage
from the evolution problem to the time-harmonic setting. One must retain the unique-solution property in
such a way as to force the solution of the steady-state problem to provide precisely the limiting amplitudes
sought; when this is done, we naturally refer to the resultant formulation as a limiting-amplitude problem.
But this difficulty is not of an unfamiliar sort. Indeed, the situation is analogous to that obtaining in the
simpler case of acoustic radiation or scattering in the exterior of, say, a rigid body, wherein the Sommerfeld
radiation condition (cf. (1.34), infra) is the appropriate requirement to be imposed for the purpose of picking
out, from among all solutions of the Helmholtz equation in Q+ that possess the required Neumann (normal-
derivative) data on F+, precisely that function that represents the amplitude of the time-harmonic motion
asymptotically approached from the quiescent state. Thus, the Sommerfeld condition can be referred to as the
"(exterior) limiting-amplitude condition" for that case. One should consult in this regard the fundamental
work of Wilcox [1] for the developments pertinent to that more familiar setting. The present problem is
more complex, requiring an "interior limiting-amplitude condition," as well as an exterior one. Indeed, by
merely setting down the necessary conditions on u and SD that evidently result from (1.10), (1.11), (1.13),
and (1.14) in consequence of the (sufficiently regular) assumed forms, one arrives at the following collection
of requirements (cf., also, Theorem 5.1 and the remarks following the proof of Theorem 5.2, infra):

Aso + K2 = 0, in Q+, (1.23)

A u + ew 2 u = -fO, in Q£, (1.24)

f -n+ iQ+WUlr+ . n+ = -W',n+) on-- -on FJ, (1.25)Tn+[u] + (i+- iw)solr+n+ -t+(i±- iw)soIn+n+,})
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and
T` [u] = t., on ir. (1.26)

However, one can already see that this problem need not be well posed, in particular, need not possess at
most one solution. For example, suppose that there is a nontrivial field u, : £,, -* C 3 such that

A*,Aun + ew 2u,,, = 0, in Q£, (1.27)

with

uJ,r+ n+ = 0, on I+, (1.28)

and

Tflo[u,,] = 0, on ,,. (1.29)

Then, obviously, the nontrivial pair (u = u,, so = 0) satisfies (1.23) and the homogeneous versions of (1.24)
through (1.26). In fact, for certain domains Q£ and frequencies w, there do exist nontrivial u", satisfying
(1.27) through (1.29). When Q, is a ball (so Q£ is absent) or a spherical annulus (so Q£ is a ball), such fields
can be constructed by means of separation-of-variables; cf. Love [2] for the former case. The eigenfunctions
us,, in question for either of these spherical geometries correspond to vibrations in which the particles of
the body move on spheres concentric with the boundary. Some of these motions are "purely rotatory,"
with all particles oscillating along arcs of circles lying in planes normal to, and having centers on, a single
axis passing through the center of the body; it is reasonable to anticipate that modes of this simple type
can be supported by any body of revolution, although we have not yet worked through the analysis of the
pertinent eigenvalue problem. For other classically familiar geometries in which separation-of-variables-type
arguments are applicable, see Ref. 3, from which the appropriate computations can be constructed on the
basis of a reformulation of the eigenvalue problem governing the purely rotatory modes for a certain class of
shapes of revolution. For example, Ref. 3 provides some of the details necessary in the study of this problem
for ellipsoids of revolution. It would be very useful to prove (as intuition suggests) that the class of bodies
of revolution is precisely the collection of domains Q, for which such nontrivial eigenfunctions can exist,
since the entire development that we shall give is much simplified when it is known that fields of this type
cannot be supported by the particular Q, under consideration. In the absence of such a proof, and since, in
any event, we wish to establish results that shall be valid for the important class of bodies of revolution, we
shall proceed under the assumption that there may be nontrivial us, satisfying (1.27) through (1.29) for the
chosen Q,, and w. Such a field us, can be termed the "complex amplitude of a nonradiating mode," since the
corresponding elastic-displacement field U., given by

Ua(., t) := Uw,,(.)ew-it in Q,, for t E R (1.30)

then churns about in the elastic medium in Q£ but has no effect on the inviscid fluid; it is completely
uncoupled from the fluid at the interface r+, and so, in particular, induces no outward radiation of acoustic
energy. No measurement made in the fluid will serve to detect its presence in the elastic body.

Conceivably, there are more complex situations in which (1.23) through (1.26) do not suffice to determine
at most one pair (u, s). To see how such a situation might come about, let us suppose that Q, is, say, a
Lipschitz domain with, for simplicity, Q£ absent (so r,, = F+), and the positive w is such that the seced
fundamental boundary-value problem of steady-state elastic vibrations of angular frequency w for Q,, A, u,
and g, is uniquely solvable in a strong sense for any boundary data chosen from some linear space H(r+) of
C 3-valued functions defined almost everywhere (a.e.) on F+. Thus, we assume that whenever t E H(F+),
there exists a unique corresponding field ut in the Sobolev space H2 (£,) := H2 (Q,,)3 satisfying

A* put + Qw 2Ut = 0 a.e. in £, (1.31)

7
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and
T'-[ut] = t a.e. on r+, (1.32)

the latter condition being fulfilled in the Sobolev-trace sense; for more on the notations H2 (Q£), etc.,
and terminology being used here, cf. §2, infra. Note that H(r+) must lie in the fractional-order Sobolev
space H-(r+) := H1(r+)3 associated with the boundary r+. Parenthetically we note that, by interior
elliptic-regularity results, each ut must have real-analytic real and imaginary parts, and so (1.31) is actually
satisfied at each point of Q£2. The trace utlr+ is then automatically determined as an element of H1(r+) by
t, so that there is defined, as a result of the assumed strong unique solvability, an injective linear operator
B H(r+) -*H(r+)

B,,,t := utJr+ (= L3,Tn+[ut1) whenever t E H(7r+).

Now suppose that there exists a nontrivial function O E C2(Q+) that possesses, in some reasonable sense, a
trace sor+ and a normal derivative An+ in the Lebesgue space L2 (r+) (e.g., suppose that b is in H2 ,(n+),

and interpret the trace and normal derivative in the Sobolev sense), with OIr+n+ E H(fr+), and is a solution
of a nonlinear and nonlocal eigenvalue problem for -A in Q+, specifically, that it satisfies

Ad +K2=0, in Q+,

along with the homogeneous (nonlocal) boundary condition

O~n+ e+C2 K2 n+ BI,(Or+n+) = 0. (1.33)

Then, taking u := ui, wherein t :=-(7+ - iw)or+n+, we obtain a nontrivial pair (ii, o) satisfying (1.23)
and the homogeneous versions of (1.24) through (1.26), as can be checked. One would expect that this sort
of eventuality could be ruled out with the additional imposition of the Sommerfeld condition. We remark
that a generalized exterior Robin problem for (1.23) and a boundary condition of a form corresponding
to the nonhomogeneous version of (1.33) is studied in Refs. 4 and 5 (Ref. 5 being a revised and somewhat
amplified version of Ref. 4), under certain restrictions on the operator appearing in the boundary condition.
In that case, it is found that the Sommerfeld condition does serve to prohibit the existence of a nontrivial
eigenfunction of the sort that we have just described.

At any rate, it is evident that some conditions augmenting (1.23) through (1.26) are wanted before there
is a chance that the resultant problem will be well posed. Keeping in mind the hypothesized origin of the
fields being sought here, we should demand that these additional requirements also follow from the original
initial-value problem, as conditions necessarily fulfilled by assumed-to-exist complex limiting amplitudes of
the elastic and fluid perturbation fields; cf. the assumptions on the forms in (1.21) and (1.22). To see more
specifically what is involved, let us formulate two requirements that we might consider imposing in addition
to (1.23) through (1.26), viz., for the exterior field, the Sommerfeld radiation condition,

lim r{e- grad y(r6) - iK+ o(r6)} = 0 uniformly for e C Si, (1.34)
r-oo0

with S1 denoting the boundary of the unit ball in R3, and, for the interior field, the orthogonality condition

J u .ue dA3 = 0 for every us satisfying (1.27) through (1.29), (1.35)

an overbar signifying complex conjugation and A3 denoting the Lebesgue measure on R3 ; the precise sense(s)
in which (1.27) through (1.29) are to be satisfied in (1.35) (and in (1.36), infra) shall be specified later. Now,
one can show, as we shall in §2, that the problem of finding a pair (u, so) satisfying (1.23) through (1.26),
(1.34), and (1.35) can have at most one solution in a reasonably large class of pairs, each comprising an

8
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interior vector field and an exterior scalar field. But this is not sufficient to fulfill our stated objective;
we must also decide whether (1.34) and (1.35) are limiting-amplitude conditions, i.e., whether they are
necessarily satisfied by our hypothesized complex limiting amplitudes figuring in the time-harmonic states
approached by fields evolving from a quiescent state under the influence of driving agents as in (1.15) through
(1.17). In fact, (1.35) does not in general meet this criterion. Rather, evidently one should require that

an u ~dAt3= 2go j0 {|To(.s) .ffIdA,,+| F'( .s)i-idA3}eswsds

for every u,, satisfying (1.27) through (1.29). (1.36)

One of the goals of this report is to supply motivation for the claim that (1.34) and (1.36) are, respectively,
the correct exterior and interior limiting-amplitude conditions to be imposed, by proving that they must
obtain at least under sufficiently strong hypotheses concerning the transients in (1.15) through (1.17), (1.21),
and (1.22). Once this has been established, (1.36) will imply that the interior limiting amplitude u is not
independent of the particular manners by which asymptotic approaches to steady-state evolve under the
influence of various To and F,, differing only in their transient parts. The reason for this circumstance
resides in the fact that the transient parts of To and F,, while dying away, nevertheless may leave a vestige
of their action by inducing a nonzero L2(£,) 3-orthogonal projection of the resultant limiting amplitude
u onto the subspace of solutions of (1.27) through (1.29), and different transient components may induce
different projections. It is trivial to see that this is so for the case in which T, = 0 and F, = F' $ 0. While
the proof of the assertion in the case T, = T$ T 0 and F, = 0 requires much more work, we choose not to
provide the reasoning in the present report.

There is an additional consideration necessitated by the presence of the forcing tractions T. and body
force F,,. We describe this by making some remarks that shall remain for the present in the nature of a
plausible conjecture, since we shall not prove them here. Consider for a moment the driving of the elastic
body in Qo, but in vacuo, from a quiescent state by means of (bounded!) applied tractions and body
force as in (1.15) and (1.16): in this case, when w has any one of an infinite, discrete set of positive values
corresponding to the eigenvalues of the traction problem for -AA ,A in 2,, a "resonance" must be expected,
i.e., one or more of the pertinent eigenmodes will be excited and the displacement response of the body will
not be bounded in Q£ x (0, co), so certainly a time-harmonic state will not be approached asymptotically.
Now, when the elastic body is surrounded by fluid, evidently the situation with regard to possible resonances
is significantly altered, for one would expect that the fluid acts as an energy sink into which the body suffers
losses by working at the interface. Consequently, even when w corresponds to one of the eigenvalues just
specified, it can be anticipated that the tendency to resonate owing to excitement of a traction eigenmode
will be suppressed to the extent that the response will remain bounded unless the body possesses such a
mode that can exchange no energy with the fluid, w corresponds to the eigenvalue for that mode, and to
and f,, fail to satisfy a certain orthogonality condition relative to that mode. When, as in our case, the
fluid is inviscid, the special eigenfunctions in question are just those (nontrivial) u,, satisfying (1.27) through
(1.29) for some w > 0. Formal computations based on Laplace transformation indicate that a condition on
t, and f, that is necessary and sufficient to ensure that no resonance be induced by excitement of any such
(nonradiating) mode appears as

Jr to .: Ir A,. +f |r f. iL, dA3 = 0 for every ur, satisfying (1.27) through (1.29). (1.37)

On the other hand, it is also easy to use certain integral identities to show that (1.37) is necessary for the
existence of a solution to the problem generated by (1.23) through (1.26), (1.34), and (1.36), while the same
condition will appear naturally in the development of the existence assertion of §4. Observe that (1.37) is
automatically fulfilled (and (1.36) reduces to (1.35)) when the only forcing agent in the problem is the fluid

9
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incident field. While the conjectures in this discussion probably cannot be substantiated unless the domain
Q. satisfies some additional requirements on its shape, they provide an heuristic basis for anticipating the
need for (1.37).

As we proceed, it becomes clear that it would be of great assistance to have knowledge of conditions
on the shape of Q,, sufficient to guarantee that, for the given w > 0, there can exist no nontrivial fields of
the sort that we have termed "complex amplitudes of nonradiating modes" for Q,, and w, those very special
(eigen)functions u,, satisfying (1.27) through (1.29). For, when we are certain that such fields do exist or
when we lack any separate assertion of their nonexistence, we must deal at every step of the analysis with
their presence or, respectively, possible presence, an aspect significantly complicating matters. In particular,
this is true in the numerical work, since it turns out that if one wants to approximate both the elastic field
u and the acoustic field S° satisfying (1.23) through (1.26), (1.34), and (1.36) (when such a pair exists), then
complete information concerning the solutions of the problem embodied in (1.27) through (1.29) is required.
However, we also wish to show that if one is content with the approximate calculation of the fluid field alone,
then one can make do with very meager information about the latter problem.

To sum up, our aim is threefold:

1. We wish to establish the unique solvability of the problem generated by (1.23) through (1.26), (1.34),
(1.36), and (1.37), in a weak sense to be specified.

2. We intend to show how the Galerkin method can be used to construct a convergent sequence of approx-
imations for the unique solution of the problem just cited above, provided that one "knows all about"
both the exterior Neumann problem for the Helmholtz equation (1.23) with the Sommerfeld condition
(1.34) and the collection of solutions of the problem (1.27) through (1.29). Also, we want to verify that
the acoustic part of the solution can be approximated without explicit knowledge of the latter family of
functions.

3. We wish to prove that, under sufficiently strong hypotheses concerning the assumed asymptotic approach
to steady-state, (1.34) and (1.36) are properties of the complex amplitudes u and p in the assumed forms
(1.21) and (1.22) of the solution (U,<l) of (1.10) through (1.14), with forcing data having the forms
appearing in (1.15) through (1.17). The results here are less than satisfactory, in that they provide only
a "plausibility argument," on the basis of which we are motivated to suspect strongly that (1.34) and
(1.36) are genuine limiting-amplitude conditions.

We shall carry out the analysis in this same order. Thus, in §2 we shall reduce the study of the original
interior-exterior problem to the examination of a purely interior problem (in Q,), while giving strong and
weak formulations for both the original and the purely interior problems. Subsequently, we shall restrict
our attention to the weak problems, deferring to a future report a discussion of regularity results for the
weak solutions, in particular, postponing the specification of conditions sufficient to guarantee that a weak
solution is a strong, or even a classical, solution. The abstract results that we need for the analysis of
the weak purely interior problem are presented in §3. There, we base our approach on developments of
Hildebrandt and Wienholtz [6] generalizing the Lax-Milgram Lemma, that we either take over entirely or
modify to suit our own purposes. In particular, an evidently new result is given in Theorem 3.3, identifying
a simple sufficient condition under which the Galerkin procedure can be directly applied to a variational
problem with an indefinite sesquilinear form appearing as a perturbation of a definite form by a compact
one. This machinery is applied in §4 to accomplish the first two aims listed above. In §5 we undertake to
provide the promised motivation for accepting (1.34) and (1.36) as limiting-amplitude conditions. Finally,
the proofs of two auxiliary results used in §5 are given in the Appendix.

10
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2. STRONG FORMULATION; DERIVATION OF THE PURELY INTERIOR PROBLEM
AND WEAK FORMULATIONS

Following a description of the basic notations to be used throughout, we proceed directly in this section

to the formulations and reformulations of the problem represented by (1.23) through (1.26), (1.34), and
(1.36). The plan consists in the use of certain facts about the Neumann problem for the Helmholtz equation
in Q+ to reduce the original interface problem to one involving only the elastic field u in Q£, with subsequent

construction of the fluid field S° in Q+ from u.

We adhere to the standard notations for the usual spaces of complex functions on subsets of RN

(N > 2). Thus, C0(F) C(F) indicates the complex-linear space of continuous C-valued maps defined on
F C RN. Let 0 be open in RN; for a positive integer k, Ck(Q) is the linear manifold of all elements of C(Q)

having all partial derivatives of orders less than or equal to k also belonging to C(0). When f E Ck(£),

in addition to the notation fj, we may also indicate partial derivatives of f in an obvious manner as f,

wherein a = (a1, ... , aN) is an N-index of order jal := a1 + - . . + aN < k. The elements of Ck(£) having
supports compact and contained in £ is the linear manifold denoted by Cok(Q). The members of Ck(gi) are

those functions that lie in Ck(£) and are, along with all of their partial derivatives, bounded and uniformly
continuous (and so possess, with all of their partial derivatives, continuous extensions to Q); Ck(Ti) is a

Banach space under the usual norm, given by

11fIICk(Ti) := sup If,<w(x)j.

In turn, for a number v with 0 < v < 1, Ckl/(2) is the linear manifold in Ck(?) comprising those functions

that are, along with all of their partial derivatives, uniformly v-H6lder continuous in Q; provided with the

norm given by

11fIlck.v~) 11 illck(ii) + rax" sup (x - y)ic'1 ,YEn~ Ix - A
xiy

CkY(Q) is a Banach space. The spaces C°°(Q), CO£(Q), and C00 (?) are defined as the intersections of,
respectively, all Ck((Q), Cok (), and Ck(fi), for k = 1, 2, 3, ...

Whenever X is a measure space, with positive measure m, L2 (X) is the collection of all (equivalence
classes of) complex m-measurable functions f defined m-a.e. on X with x if 12 dm < oo; in this setting,

L 2 (X) is equipped with the inner product (, I .)L2 (X) 

(f, )L2 (X) := J fgdm for f,g E L2(X),

under which it is a Hilbert space. The Lebesgue measure on RN shall be denoted by AN

Concerning regularity hypotheses for a bounded and connected open subset 0 of R3 , we use the defini-

tions of Necas [7]. Corresponding to a positive a, let Sa denote the open square (-a, a) x (-a, a) in R2 . By
an affine isometry of R3 , we mean a function x -* Lx = x0 + Lox on R3 , with xo E R3 and L0 : RP3 -* R3
a linear isometry. Now, let k be either a nonnegative integer or oo; £ is said to be of type Rk provided there
exist positive numbers a and b, a positive integer n, a collection {ff}Z= of real-valued functions contained

in Ck(S 0,), and a family {LI}In1 of surjective affine isometries of R3 such that

11
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(a) for I = 1,.. . , n, Li maps the graph G{jf} of fJ into aQ, the set

{ (X1 ,X 2 ,X3 ) (X1 , X2 ) E Saf(X1, X2) < X3 < f(X1, X2 ) + b}

into Q, and the set

{ (x, x 2 ,x3) (x 1 , X 2) E SawfZ(XzX2)-b < X3 < fj(X1,X 2 )}

into RP3 \ Q

and

(b) OQ = U' 1 LI(G{fi})

Further, if these conditions are fulfilled and the family {ff}n 1 is in Cky(Sa) for some number v E (0, 1],
then Q is said to be of type Rk,'. Bounded and connected open sets of type R0M1 are also termed Lipschitiz
domains. For the definition of the Lebesgue measure (induced by A3) on the boundary OQ of a Lipschitz
domain Q, cf. Ref.7, §3.1.1 or Ref.8, §1.1; we shall denote this measure by A.., and its restriction to the
measurable subsets of a measurable subset F of aQ by Ar. For such Q, the unit exterior normal field n
exists A,--a.e. on aQ, with Cartesian components A.,-measurable (and bounded); by "exterior," of course
we mean here that, whenever a normal is defined at x C 0£, the inclusion x + sn(x) E P3 \ Qi obtains for
all sufficiently small positive s. Explicitly, suppose that x E OQ is such that for some I C {1,...,n} and
(Z1, 2) E Sa we have x = Ll(z1, 2,fl(l,z2)): then, provided that f1,i(zil, i 2) and fI, 2 (i1,.2) exist, n(x)
exists and can be computed from

n(x) =

wherein LIO is the surjective linear isometry associated with LI, and (in Cartesian components)

fij(-A1, -i2) + (fzivl, i 2), fl, 2 (1i, Z 2), -1)
{1 + [fi-1,l, 2)]2 + [fi, 2 G1, Z2)]2}1/ 2

is the appropriate unit normal to the graph of fj at the point (il, S2 ,f l(il , i 2))-

For the definitions and properties of the various Sobolev spaces, we rely on Necas [7]; cf., also, Adams [9],
wherein certain of the results are to be found. Returning to the case in which Q is open in RN, for a positive
integer k the corresponding Sobolev space HM(£) ( W(k)(£) in Ref 7, Wk2(Q) in Ref. 9) is the set of
all elements of H°(Q) := L2 (Q) for which all weak (distributional) derivatives of orders less than or equal to
k exist and belong to L2 (Q); we extend the notations f,j f,<, to indicate the weak derivatives of an element
f E Hk(Q). Defining an inner product on Hk(£Q) by

(O)Hk(n) := (fE ,019,)L 2(n) for f, g E Hk(Q),
O<Ital<k

Hk(£Q) becomes a Hilbert space. The definition of Hk(£Q) is extended to encompass nonintegral values
of k > 0 as in Ref. 7, §2.3.8, in a well-known manner, by using the approach of S. L. Slobodetskii and
N. Aronszajn; such spaces are needed here for the definition of the fractional-order Sobolev spaces on aQ,
infra. Thus, when s is positive d nonintegral, with [s] denoting the greatest integer not exceeding s, one
sets

IIUIIH.(nT) := fIIUi[+ jJI2u,"(X) - u,0 (y)12 Au = IH[ ](f) + I | J ' yIN+2(s'[s) dAN(x) duAN(Y)

for those u C H[l](Q) for which the integrals appearing on the right are all finite; the resultant complex-linear
space is equipped with the obvious inner product generating 1 forming a Hilbert space denoted by

H (£2). Finally, when Q is not bounded, by Ho,(Q) we shall mean the collection of all complex measurable
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functions defined a.e. in Q and having restrictions in H8 (Q') for every bounded open subset Q' C Q; in the
standard manner, H' J.() is made into a locally convex linear topological space through the introduction of
the seminorms u -* IIUI H.(ni).

In this paragraph, Q C R3 shall be (at least) a Lipschitz domain, whence a good deal more is known
about the structure of Hk(Q) than in the case of a general open set. We shall write F := 8£Q. Thus, Ck(Q)
is dense in Hk(q) (cf. Ref. 7, Theoreme 2.3.1 or Ref. 9, Theorem 3.18), and there is defined the Sobolev
trace operator u 1+ u1r from H1 (Q) into L2 (F), as the unique bounded extension to H1 (Q) of the "classical"
trace map f I.. fIr := fIr for f C C'(?i), regarded as densely defined in H1(£Q) and mapping into L2( )
(Ref. 7, Theoreme 2.4.2). Moreover, both the natural injection of H1 (£Q) into L2((Q) and the trace operator
carrying H'(Q) into L2 (r) are compact (Ref.7, Theoreme 2.6.1 and Theoreme 2.6.2). At various points,
we shall make reference to Sobolev spaces H3 (F) associated with r, for certain real (nonintegral as well
as integral) values of s. Following §2.4.3 and §2.5.2 of Ref. 7, let k be a positive integer and Q be of type
Rk-1,1: when 0 < s < k, the corresponding H3 (r) is defined to comprise those g in L2 (F) for which the
function g, defined A2 -a.e. on Sa by g1(X1,X2 ) := g (Li (xi,X 2 , f,(X1,X2 ))) lies in H8 (Sa) for 1 = 1,.. .,n (cf.
the notations employed in the definitions of the regularity classes of open sets, supra); when provided with
the inner product ensuing from this construction,

n

(g, h)H.(r) :=91, hl)H'(So),
1=1

H8 (F) forms a Hilbert space. With this definition, the range of the trace operator on H1 (Q) is characterized
as precisely the collection of elements in H2(r), and the resultant map, when regarded on H'(Q) onto
H1(r), is bounded (Ref.7, Th6oreme 2.5.5 and Th6oreme 2.5.7). Finally, provided that s > 0 and H3 (r) is
defined, H--(F) denotes the anti-dual of HS(r) (the collection of all bounded conjugate-linear functionals
on H-(r)) and (., .), the resultant duality pairing on H`(r) x H7(F). With the usual identification, we can
regard H°(F) := L2 (F) as a linear manifold in H-8 (F), and then can write

(f ,g) = J fs dAr = (f, )L2 (r) for f E H°(F) and g E Hs(F).

The extension of the formula for integration by parts ("formule de Green"), classically a corollary of the
Divergence Theorem, to the Sobolev-space setting for a Lipschitz domain is effected in Theoreme 3.1.1 of
Ref. 7. Thus, we have

in ujv dA3 = J ulrvlrnj dAr- iuvj dA3 for u, v E H1(Q), j = 1,2,3,

(ni, n2, n3) denoting Cartesian components of the unit exterior normal field n, defined Ar-a.e. on F.

For each of the spaces of complex functions defined in the preceding, we introduce the corresponding
space of C 3-valued functions, identified as the Cartesian product of three copies of the original collection,
and denote the new space with the corresponding boldface symbol, C(F), Ck(Q), L2 (X), Hk(Q), etc. L2 (X)
is provided with the Hilbert-space structure induced by the inner product given as

(fg)L 2(x) := |f gdm for f, g E L2(X);

Hk(Q) is equipped with the inner product defined by

(f, g)Hk(n) := > (fE , g,)L 2(n) for f, g CH(Q),
O•<Ice<k
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under which it also becomes a Hilbert space. Similarly, the other products of Hilbert spaces are given their
natural Hilbert-space structures.

Returning to the developments begun in §1, we retain the notations already introduced there. We
now suppose that Q, is a Lipschitz domain, but we impose the restriction that (the fluid-elastic interface)
r+ be a manifold of class C2 , just so that we can use directly the results of Refs. 4 and 5, wherein this
much smoothness was demanded. Still, the components of (the vacuum-elastic boundary) F. are allowed
to be nonsmooth, with corners and edges of a severity permitted within the Lipschitz-domain setting. More
precisely, then, the (bounded and connected) open set £. U Q£ shall be taken throughout to be of type XR2

Alternately, the regularity requirements on r+ can be phrased in terms of the notations already introduced:
let a > 0, b > 0, the integer n, and the families {f,}"L, and {L1}'L, be associated with Q,, as a result of
its being of type R0)'. If Q£ is absent, let n+ := n; otherwise, we may suppose that matters are arranged
so that {1, . . ., n} can be partitioned into {1, . . ., n+} and {n+ + 1, . . ., n}, with r+ = U?+Ž L

1
(g{f,}) and

r = U= ,++1 L1(G{f,}). Then our restriction is expressed by the inclusion {ff}+c C 2 (8). Observe that
the spaces HS(r+) and H 3 (r+) are defined for Isl < 2 and can be described more explicitly with the help of
a, b, n+, and the f1 and L, for =1, . .. ,n+. For brevity, we write (with H0 (Q,,) := L2 (Q£2)) HW := Hk(Q,)
for k = 0, 1, 2,.... If u E H', by ulr_ and ulr,+ we mean the restrictions to rP and r+, respectively, of the
trace ulr of u on I,, i.e.,

ulr_ := (ulr,)Ir- and ujp+ : (uur)IP+ whenever u E H'.

With this understanding, we want to make sure of some simple facts concerning the linear maps u -÷ u1r+
and u .-- ulr+ n+ on H', which will be of importance in the later developments.

Lemma 2.1. Recall the regularity conditions imposed on Q£.

(i) The linear operations u i- ulr+ and u -ulr n+ on H' are compact when regarded as mapping into
L 2 (F+) and L2(F+), respectively.

(ii) Thelinearoperations uF-l* +andu -*ulr,-.n+ carryH' ontoH*(F+) andintoHi(r+), respectively,
and are bounded when so regarded.

Proof: The assertions in (i) follow immediately from the compactness of the trace map u -ur on H' into
L2(F,) and the obvious inequalities Ii(gIF+) n+IIL2 (r+) < llglr+II 2L(r+) < 1IIIL2(r.), holding for g C L2(F,,).

Turning to statement (ii), let us first show that HL(F+) = {ulr+ I u C H1 }. The inclusion "D" here is
easily seen to hold by virtue of the inclusion ulr E H I (F,,) and the remarks made concerning the generation
of H2(F+). The proof of the opposite inclusion requires not much more work: taking any g E H2(r+),
extend its definition (if necessary) to get an element A of H±2(F,) by setting, say, g(x) := 0 for x C rp; there
exists some ui E H' such that ilr0 = , whence we have flr+ = g. Thus, u -* ur+ carries H1 onto H12 (r+),
the boundedness of this "restricted-trace" map then follows from the boundedness of the trace operator from
Hi onto H2(rF) and the evident inequality 1 0 +1 I <_ IHg(l I , holding for g e H2(F,,). Finally,

let u C H': we show that ulrp+ n+ lies in H F(r+) and that there exists a positive c1 , independent of u, such
that luJ,+ -n+H . < clulr+Ill , which then effectively completes the proof of (ii). To this end,
by using the notation introduced above, select any I E {1, ... ,+} and consider the function (ulr- n+)
defined for A2-almost all (Xz, X2) S,, by

(ulr,+ -n+)I(, X2) := (ulr, * n+) (LI (xi,, f2 ))) X L2)))

=u~r, (LI (xi, X2, fJ(X1, X2))) -LI,,(fi(xi, X2)) = (ulrl+)I(Xl, X2) LI. (fi(xi, x2)).
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Clearly, the inclusion fil e C1(3a) holds by our restriction on Q2, so the function fil is certainly uniformly
Lipschitz continuous on Sa9 Consequently, we get

f f I(ur, -n+),(xi,X2 ) - (uIr+ .n+)1 (yl,y2)12

Jsa Js. (X 1,X 2) - (Y1,Y2)13 dA 2 (I',x 2 )dA 2 (,y 2 )

<2ff IU~r,)(Y1,Y) 12 fij(X, X2)- fi1j(Y1, Y2) 12
dAXlX2 2(YIY2

• 2 {j I(ujr+)g(yi, Y2)12I I (X1: 2) - (Y1,)13 dA2(xi,12)dA2(yiy 2)

f I(uIr+)z(X1, ~2) - (Ujr,)1 (Y1 , Y2)12 dA 2 (Xl, X2 ) dA2 (Yl,Y2+1 ../ 0x, X2 ) - (Y1, Y2)13

H fs. I.+ ( Xlr 1)i(zi, X2) - (Yu1Y2) , 13•2 MlI~ur+l~ios,,+ Is,, ./ I( xiz)-Y,x2)| - (ylZy2)1)dA 2(xi, x 2) d 2 yY)

* Mj1II(Ulr+)jjI2~ 1.

in which Ml and M/ depend upon QO2 and 1 alone. Moreover, obviously

11(ulr, n+)lllHr°(S.) < 11(Ulr+)11IH0(S,,) < 1I(ulr+)1I H 2(S.)'

From these facts, we conclude that (ujr+ .rn+), lies in H (Sa), with norm not greater than a positive multiple
of II(uIr+)uI H (I)' the multiple depending upon only £2 and 1. In turn, this implies that ulr+ n+ belongs

to H'2(r+), with norm not exceeding a positive multiple of juIr+ll jI , the multiple depending on QO

alone. i

For the various formulations of the problem loosely described in § 1, and for its reformulation as a purely
interior problem in Q£2, we need some preliminary results on the (purely exterior) Neumann problem for the
Helmholtz equation and the Sommerfeld condition in Q+, with boundary data lying in L2(r+). For this,
it is most convenient to rely on the developments already in place in Refs. 4 and 5. There, a generalized
Robin problem, subsuming the Neumann problem, is studied by using potential-theoretic methods, although
the analysis is not carried out within the Sobolev-space setting, but completely in L2(F+); the later article
Ref. 10 is concerned with the connections between the two approaches. In particular, in Refs. 4 and 5, traces
and normal derivatives on r+ are taken in the normal-L 2 sense. To recall the pertinent definitions, let
N, : r+ - R3 be given for any s > 0 by

Ns(x) := x + sn+(x) for each x E r+;

because of the regularity imposed upon Q., there is some s+ > 0 such that N,(F+) C Q+ whenever
0 < s < s+. Thus, if ?b is any function defined in Q+, then 0' o N, is defined on F+ for all sufficiently small
positive s. Now suppose, for simplicity, that wo E C1 (Q+). Then we say that yp has a trace on r+ in the
normal-L 2 sense iff lim,_ 0 + 9p o N, exists in the L2 (F+)-sense, i.e., iff

lim jI oN3 -N plr+IIL2(r+) = 0
3 ~0+

for some C012 E L2 (r+), in which case the latter function is termed the normal-L 2 trace of 'p on P+.
Similarly, we say that S° has a normal derivative on r+ in the normal-L2 sense iff lim3 .- o+ n+ - (grad S°) o N3

exists in the L2 (1+)-sense, i.e., iff

lim IIn+ . (gradp) o N, - s,2+1L 2(r+) = 0
3 -_0+ 
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for some 'p, 2 C L2 (r+), in which case the latter function is called the normal-L 2 normal derivative of ' on

r+. When both 'p2 and V, 2 exist, we say that ' is L2-regular at r+. With the understanding that the
trace and normal derivative of an appropriate function ' in Q+ are always to be interpreted in this sense,

henceforth we omit the superscript "2" and write, respectively, simply 'p1r+ and V,n+ for these elements of

L2(r+) .

Now, we introduce the collection W(Q+; tc+) of radiating solutions of the Helmholtz equation (1.23) in
Q+ that are also L2 -regular at r+:

W(g+; 1%) := { ' C C2 (Q+) 1 (1.23) and (1.34) hold, and ' is L2 -regular at r+}

For 'p e W(Q+; tc+), we refer to 'Ir+ and V,.+, respectively, as the Dirichlet data and the Neumann data of

'p.

The basic facts that we shall use concerning the Neumann problem for (1.23) and (1.34) in Q+ are
collected in Theorem 2.1. To state the results, we need to introduce an "outgoing" fundamental solution for
the operator A + I 2; we choose the particular one given by, for each x E R3 ,

eis+ [Y-x1
E.'+(y) :-2lrly-xI for y 3 \{x}.

Whenever x C R3 , we write E + := n+ (grad Ex+)I(F+ \ {x}) for the normal derivative of Ex+ on

r+ \ {x}.

Theorem 2.1. Recall the regularity conditions imposed upon Q+ and the inequalities Re Ic+ > 0 and
Im c+ > 0 fulfilled by I+ .

(i) The linear map 'p -* ,+ is a bijection of W(Q+; c+) onto L2(F+).

(ii) By (i), the linear operator A+ : L2 (r+) - L2 (1+) given by

An+ g := Wglr+, wherein 'Og E W(Q+;Kc+) with Yon+ = g, for each g E L2 (r+)

is well-defined. This operator is compact, infective, and has dense range in L2(r+), while -ilc2An+ is
"strictly dissipative," i.e.,

Im(ICAn+ff)L 2 (r+) < 0 whenever f E L2(r+) and f 4 0. (2.1)

(iii) For any g C L2(I+), the corresponding unique 'Og E W(Q+; K+) such that So_ ,+ = g, i.e., the corre-
sponding unique solution in W(Q+; tc+) of (1.23), (1.34) with Neumann data g, is given by

'pg(x) = 2 j {E -+g+- +n+ g dAr+ for x E Q+. (2.2)
2 +

Proof: This is proven in Ref. 4, §6 and §7; cf., also, the remarks there in §2 following the definition in (2.2)1.

Actually, in Ref. 4 it is assumed that tc+ $ 0, with Im tc+ > 0, and tu+ > 0 if Im 'c+ = 0. It is shown there

that the statements (i), (ii), and (iii) hold on that larger set of tc+-values, with the exception of (2.1).

Rather, there is a generalization of (2.1) asserting that, for any such tc+, the operator -iCA,+ is strictly

dissipative, i.e.,
Im((A.+ ff)L 2 (r+) < 0 whenever f E L2(P+) and f # 0,
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for any C lying in the complex set Z,;+ defined by

C { R C E | > 0= (0, o), if Im ac+ = 0,

C {C C C | ImC > 0, Im((C-- 2 ) < 0, and [Im+]2 + [Im(c- 2 )I2 > 0}, if ImKc >0.

One can check that, for the larger set of c+-values specified, Icy2 lies in Z,,+ iff ReKc+ > 0, whence (2.1)
results. I

The operator A,+ of Theorem 2.1 can be referred to as the (L2(I+)-) boundary-data operator for
W(Q+;tc+), since it maps the Neumann data Yn+ to the corresponding Dirichlet data 'ppr+ for each
'p C W(Q+; K+). This operator has a number of interesting properties in addition to those just cited in
Theorem 2.1, some of which are given in Refs. 4, 5, and 10. Henceforth, we shall suppose that we have at our
disposal some means for constructing the image A,,+g for each g E L2 (r+), which is essentially equivalent
to assuming that we can construct the solution of the Neumann problem for (1.23) and (1.34) in Q+ for any
boundary data in L2(r+). Various schemes are available for accomplishing this. For example, an explicit
representation of the operator A,,+ can be obtained if one is willing to carry out the Gram-Schmidt or-
thonormalization procedure for an appropriately chosen complete family in L2 (r+); cf. Lemma 6.3 of Ref. 4.
If is not in the countably infinite collection of (positive) Dirichlet eigenvalues for the operator -A in
the interior domain n- U QO (= P.3 \ Q+), then A,,+ is given by (I + Do+ )-1 S, +, wherein So,+ and Do+
are the compact operators in L2 (r+) constructed from the "direct values" of, respectively, the single- and
double-layer potentials based upon the fundamental solution E"+: for f E L2(F+), S,+f and D,;+f are the
elements of L2 (1'+) defined by setting, for Ar+-a.a. x e r+,

S,;+f(x) := | E.+f dAr+

and

D,;+f(x) :=|Er+ nf dAr+

However, unless Imtc+ > 0, one does not usually know whether a2 is not amongst the eigenvalues just
specified, i.e., whether the operator (I + Ds+) is injective, and so, in general, a more difficult operator
inversion must be effected to capture A,+ . For example, it is shown in Theorem 8.4 of Ref. 4 that one can
always compute on the basis of the representation

A}G+ = {S,+-((I- D.+)} {I + D+ + Mr.+ m}1

wherein Do is the compact operator in L2(r+) obtained by conjugating the kernel of the (L2((r+)-adjoint)
integral operator Do+; ( is any conveniently chosen complex number with positive imaginary part (or, in the
more general case identified in the proof of Theorem 2.1, with Imd 7 0 and Im ReKc+ > 0); and W,+,.+
is the densely defined and unbounded operator in L2 (r+) induced by the normal-L 2 normal derivative of
the double-layer potential in Q+ (or in Q-). That is, defining the (restriction to Q+ of the) double-layer
potential W+{f} with density f E L2(r+) by

W+ J{f}(x) := 4| En+fdAr+ for x e Q+,

then Wc+,, 1+f is defined to be the normal-L 2 normal derivative W+ {f},n+, on the linear manifold of all
f e L2 (r+) for which this normal derivative exists (which turns out to be precisely 1?(A,,+), the range of the
operator AK+; cf. Ref. 4, Corollary 8.3). Another scheme for calculating the action of As+ is implicit in the
results of Ref. 11 and stated more explicitly in Theorem 8.1 of Ref. 4. Although it has not been formulated in
this manner elsewhere, the problem of deriving representations for A,,+ that are valid even when c 2 happens
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to be one of the Dirichlet eigenvalues of-A in U_ U Q. has been the object of much study; cf., e.g., Refs. 11,
12, and the references given therein.

By relying on properties of the single- and double-layer potentials that are proven by Kirsch [13], some
connections are made in Ref. 10 between the L2 -type results just cited and those that can be established
within the Sobolev-space setting. For example, with Q_ U Q, of type K2, as we are supposing here, it can be
shown that 1Z(A,+) lies in Hl(]F+). For a given real number s, with more smoothness hypothesized for 1+
(depending upon s), it turns out that the restriction A,+ IH3 (]+) forms a bounded bijection of H8 (F+) onto
HS+l(1r+) when s > 0 while A,+ can be extended to a bounded bijection of HS(1+) onto HS+l(2r+) if s < 0.
By using results of this sort, we find, for example, if Q_ UPo is of type R',v and g is a member of H 2 (1+), then
the function 'op C W(Q+; i+) defined by (2.2) lies in H (2 +), and so possesses both a Sobolev trace and a
Sobolev normal derivative on 1+, elements of H2(F+) and H1(1+), respectively; moreover, these coincide
with its trace and normal derivative on I2+ in the normal-L 2 sense, given by A,+g and g, respectively (cf.,
also, Proposition 2.2, infra). Presently, we shall see that we need to construct the solution 'pg of the exterior
Neumann problem (with (1.34)) here only when the boundary data g E H 2 (1+); the preceding remarks will
then supply the Sobolev-space properties of that solution when r+ has the additional smoothness noted.

To concisely formulate the conditions (1.35) and (1.36), it is convenient to introduce the linear space
j.V,,2 of complex amplitudes of strong nonradiating modes for Q, and w:

_,, : = { u,,, E H2 1 (1.27) through (1.29) hold }. (2.3)

Here, we mean that (1.27) through (1.29) are to hold a.e. on the respective sets indicated, with respect to
the appropriate measure (A3 or Ar.), the conditions in (1.28) and (1.29) being interpreted in the sense of
the Sobolev trace operator on H'; cf. (1.4) through (1.6) for the calculation of the action of Tno[.] on an
element of H2 . Now, with (K ,)(±)o denoting the orthogonal complement of A0 ,AJ taken with respect to
H°, we shall write M 2 for the linear manifold of elements of this orthogonal complement that also lie in
H 2

M ,,,:= (A(, ()O )n H (2.4)

Since ( ,J(')O is closed in H°, it is easy to see that M 2 is closed in H12. Eventually, we shall find that
,,,,, is finite-dimensional (a fact that is not surprising, since, when it is nontrivial, X22 ,, is a subspace
of an eigenspace for the traction problem for-A*, in Q,), and so also closed in each Hk, k = 0, 2. In
particular, once this is known, we shall have the orthogonal direct-sum decomposition

Ho = e (gAl,)(I)o, (2.5)

whence it shall follow readily that

112 = go ,n + M2. ' with Ar 0 , f = {0}, (2.6)

i.e., we will have the (nonorthogonal) direct-sum decomposition of H2 into the subspaces indicated. In this
case, we shall reduce the problem corresponding to (1.23) through (1.26), (1.34), and (1.36) to that in which
(1.36) is replaced by (1.35), essentially by seeking separately the projections of the solution onto the subspace
of amplitudes of nonradiating modes and onto the H°-orthogonal complement of that subspace (and we shall
effect this reduction in both the strong and the weak formulations). Since we must frequently refer to these
two sets of requirements, it is convenient to introduce some abbreviated references.

Terminology 2.1. Let f0 E Ho and t, E L2 (]P4. Let £2' be open in R 3 and contain Q_ U QO, and suppose
that 'p' C C2 (Q') satisfies (1.18). Then by (Po) _ (Po(f 0,to')) we refer to the problem of determining
an appropriate pair of functions (u, 'p) satisfying, in a sense that is always to be specified in the context,
the conditions (1.23) through (1.26), (1.34), and (1.35). Suppose also that T' on F. x (0,oo) and F' on
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. x (0, oo) are measurable C 3 -valued functions such that Tr(-, t) E L2(ro) and Fr(-, t) E Ho for each t > 0
and

f(u<^;,F;) ='2-[ { Tr(.,s) -Zi, r. dAr +j F'(-,s) -ffl, dA3} e's ds (2.7)

exists whenever u,,, E H' satisfies (1.27) through (1.29) in a specific sense to be designated in the context;
for example, for the existence of the integrals in (2.7), it is sufficient to know that the functions t 
11T7(, t)IIL (r ) and t - 1Fr(., t)ll are in L,(0, oo). Then, by (P) (P(fo, to, 'o'; F', T)) we shall refer
to the problem of determining an appropriate pair of functions (u, ') satisfying, in a sense to be designated
in the context, the conditions (1.23) through (1.26), (1.34), and (1.36).

Of course, it is not really necessary to retain the explicit appearance of the complex amplitude so' in
the conditions in (1.25), since we could just replace the inhomogeneities there with some given elements
of L2 (r+) and L2 (r+), respectively. However, we wish to maintain contact with the underlying physical
setting, and so choose to continue writing the interface conditions in their original form (1.25).

We shall first define "strong solutions" of (Po) and of (P), since one has for such solutions a better feel
for the sense in which the various requirements are fulfilled. Eventually, however, we restrict our attention in
the present report to the study of weak formulations of these problems. Whatever else is demanded of them,
all solutions of (1.24) (or (1.27)) that we consider shall be HW-functions u that are, in particular, solutions
in the distributional sense, i.e., such that

u| {-A1, v + e0 w2 v dA3 =- fo vdA3 for every v C C'(Qo),

whence their (local) interior regularity properties will be known from the well-developed theory of regularity
for strongly elliptic systems. For example, Theorem 3.1 of Ref. 14 implies that, if f, CE Hk for some integer
k > 0, then any u e Ho satisfying (1.24) in the distributional sense will have restrictions in Hk+2(Q) for
any open Q with ?i C Q,,. The Sobolev Imbedding Theorems then show that, if fo E H2, such a u will
be in C2 (Q£2), and so also a classical solution of (1.24) (in fact, the same conclusion can be drawn even if
it is known only that f, lies in C'L'(Qo)); if fo E Cw(Q,), then u will satisfy that inclusion as well (for
these assertions, cf. Theorem 3.II of Ref. 14). If f0 has real-analytic real and imaginary parts, the same will
be true of u (cf. Ref. 15). Thus, the elements of JVo c, enjoy the latter property of real-analyticity (as do
those of n' ,a, to be defined presently). All of our solutions of (1.23) will be classical, in W(Q+; K+), and
consequently will also have real-analytic real and imaginary parts. Global regularity ("regularity up to the
boundary") for the solutions of our boundary and interface problems is another matter, that we shall touch
upon in this report only in Proposition 2.2, infra, and there we shall give a limited result only for the scalar
part of a solution.

Definition 2.1. Recall Terminology 2.1. The pair (u,'p) is a strong solution of (Po(fojtO')) iff u e
Mnl a ' E W(Q+;tc+), (1.24) holds a.e. in Q,, (1.25) holds a.e. on r+, and (1.26) is true a.e. on r1, with

ulr+, Tn+[u], and T`-[u] interpreted in the sense of the Sobolev trace operator, and V°|r+ and W, . taken
in the normal-L 2 sense on 1+. Suppose it is known that ( ,2, is finite-dimensional, with dimension no, > 0;

if no > 1, let _u(j)}jn- constitute an H0 -orthonormal basis for An2 Suppose that the integral in (2.7)
exists for every u,,e EC A ,,,. Then the pair (u, 'p) is a strong solution of (P(f 0, to, Sa; Fo, Tx)) iff

0 if n, =0

U = no + f(t ,(P))u(j) if n. > 1 (2.8)

and (uo, ') is a strong solution of (Po(f., to ,p')) (cf. (2.7) for the coefficients in (2.8) when n, > 1).
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The requirement that the vector part of a strong solution of (Po) lie in M' ,,, is the strong form of the
condition (1.35); the requirement that the vector part of a strong solution of (P) be of the form (2.8) with
(in particular) uo E M2 a, is the strong form of condition (1.36), ensuring that the latter holds for every
us,, E 2 ,,,. As a consequence of Definition 2.1, we essentially need consider only the study of the existence,
uniqueness, and construction of strong solutions of the problems (Po). We will find that, even in the best
of circumstances, one must identify K2,0 , to approximate the elastic-field portion of a solution of the latter
problem, so that there will be but little additional work involved in using (2.8) if the ultimate goal should
in fact be the solution of a problem (P).

Obviously, under Definition 2.1 (P(fo, to, 'p'; FT, Tx)) can have at most one strong solution if the problem
(Po(f., to, p')) enjoys that same property. To emphasize the r6le played by (1.34) and (1.35), let us prove
that there can exist at most one strong solution of the boundary and interface problem (PO). In preparation,
we need a familiar integral relation (which shall be used later, as well), viz.,

Inv. A{V u + A,(uv)}dA 3 = 4 vIr. . T'n [u] dAr. for u E H2 and v e H', (2.9)

in which

,, (u, v) := Aejj[U]ekk[v] + 2pejk[U] Jk[v] = [ jk[U]-jk[v] = ujk[V]Ejk[u] for u,v E Hi. (2.10)

This identity is easily derived with an application of the formula for integration by parts, cited previously.

Theorem 2.2. There can exist at most one strong solution of the problem (Po(f., to, ,'p)), in the sense of
Definition 2.1.

Proof: Let the pair (u, so) be a strong solution of (Po(O, 0,0 )), i.e., with fo = 0, to = 0, and'pd = 0. Then,
by using (1.25) and the mapping property of A,, following from its definition in Theorem 2.1(ii), and noting
that Tn+ [u] is a normal field on 12+, we have the equalities

'f)n+Ar n+ = n+'0,n+ = (-ie+wu!r+ -n+) (- . Tn+[u] n+)
ie w

=- + . TT+[u]* Jvr+
a+-- iW

between elements of Li(IF+), whence a little rearrangement and integration over r+ produces

_+X2 +Axc+sOun+, sn+)2(r+) =- 4 T +[u] - Ulr+ dAr+. (2.11)

On the other hand, from (2.9) and by taking into account (1.26) and (1.24), we get

T"+ [u] iUTIr+ dAr+ = 4 Tno [u] . Uir, dAr.

= L ' A,,u + EA,,(u, i)} dA3 = f {-oW2U ii + &,A (uU )} dA3,

clearly implying that the integral on the right in (2.11) is real. Thus, (/ 2An+On,+),on+)L,(r+) is real, so
that the vanishing of En+ follows from (2.1). Statement (i) of Theorem 2.1 then allows us to assert that 'p
vanishes in Q+. Now, (1.24) through (1.26) and the inclusion u E H2 show that u C K (,,; since we also
know that u C (En ,,)(±)o (by Definition 2.1), it must be that u = 0. This completes the proof. I

It is interesting to note that, without the condition that u lie in M2 ,, we could still have deduced
that 'o = 0 by reasoning as in the proof, but then would have been able to conclude only that u C Al a,.
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Now, we turn to the reduction of the strongly formulated boundary and interface problem (Po) to a
purely interior problem (in Q,,) with a nonlocal boundary condition, basing the replacement on the properties
of the operator A,,+. Suppose that (u, p) is a strong solution (and so also the unique strong solution) of
(Po). Then, by the boundary-data-mapping property of A,,+ and the first equality in (1.25), we have

solr+ = A+Sn+ _ = AK.+(ie+wulr+ . n+) -A,,+ +

and so the second equality in (1.25) becomes

Tn+[u] + (7+ - iw){ie+wA,,+(uir+ * n+) - A.+sorn+}n+ = t+- (y+ - iw)sotJr+n+,

or
T"+[u] + 2+c24{A+(u r+ )n+ = t+ - (ny+ -v--iw){ 9 - A }n + (2.12)

a boundary condition on u alone. This motivates

Definition 2.2. Recall Terminology 2.1. The function u is a strong solution of the purely interior problem
corresponding to (Po(fo,,to, sto )) iff U E M2W,, (1.24) holds a.e. in Q[, (2.12) is true a.e. on F+, and (1.26)
holds a.e. on P-.

To find a strong solution of the original problem (Po), it is easy to see that it suffices to generate a
strong solution of the corresponding purely interior problem. For, if u fulfills all requirements of Definition
2.2, let us construct the unique Sw e W(Q+; K+) having the Neumann data given by

sorn+ = ie+wulr+ * n+ - Vot+; (2.13)

observe that the function on the right here lies in H21(r+) (cf. our previous remark). Explicitly, from the
representation (2.2) of Theorem 2.1, this s is given by

so(x) =- +{Ex+Vson+ -. E .+nA. +v. } dArn

+ 2e+w j{Ex+ulr,+ n+ -Ex-+fl+AK+(ulr+ .n+)} dAr+ for each x E Q+. (2.14)
2 +

With (2.13), we have automatically ensured that the first equality in (1.25) is fulfilled a.e. on I+, while the
validity of the second requirement there follows in the same sense from (2.13) and (2.12):

T'+[u] + (-y+- iw)solr+n+ = T'+[u] + (iy+ - iw)(A.+so,.+)n+

-- e+w(w + iy+)f{AA+(ujr+ n+)f}n+ + t+ - (y+ - iw){sofjr+ -A+,n+n+

+(7+ - iw){ie+wAK+ (ujr+ * n+) -A., Yn+I}n+

t+ -(+-iw)so tJr+n+.

Consequently, (u, so) satisfies all of the requirements placed in Definition 2.1 on a strong solution of (Po). It is
important to note here that only the normal component ulr'+ .n+ of the trace of u restricted to r+ is needed
for the construction of so by use of (2.14), i.e., to calculate the fluid field once the strong solution of the
purely interior problem for the elastic field has been obtained; the complete implication of this observation
for the numerical work will emerge in §4. We might also remark that the representation displayed for so in
(2.14) has split naturally into a sum of two integrals taken over r4. Of these, Theorem 2.1 makes it clear
that the first is a representation for the unique element of W(Q+; tc+) with Neumann data -n+I which is
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nothing else but the complex amplitude of the time-harmonic scattered-field velocity potential that would be
produced by the interaction of the time-harmonic incident-field velocity potential with complex amplitude 0'p
with a rigid obstacle occupying Q_ U QO, under the usual steady-state assumption. The second term on the
right in (2.14) must then encompass all contributions from the elastic nature of the obstacle, the impressed
tractions, and the imposed body force. By using Green's Theorem, the first term can be recast into the
form -(1/2) fr+ Ext + + p'jn lr+- Ax+ - AK )} dAr+, in which there appears the same field S'pjr+- ( on
1+ as in the new boundary condition (2.12) of the purely interior problem; this is the sum of the incident
and the scattered fields, or "total field," on r+ in the rigid-acoustic steady-state scattering interaction just
mentioned.

It is appropriate to include here an observation pertinent to the eventual numerical approximation of
'p and its far-field pattern from numerical approximations generated for u by computations based on the
interior problem. We recall that to each element 0 of W(Q+; tc+) there is associated a unique complex
function V,. on the unit sphere S, of RP3 with the property that

(1 +(re) =~~-i-i~ )+ ( as r- co,for each eCGSi.
r \r2/

This function MOO is variously termed the far-field pattern, or radiation pattern, of 0; cf., e.g., Ref. 12. Since
?, ,(0&) = limn rOO(ei,+r/r)-iO(re) for each e C SI, by using the representation for elements of W(Q+; K+)

that is obtained from (2.2), it is easy to show that

1 - ex+ Ax, Om, I dAr, for each e E S, (2.15)

whenever 0 E W(Q+; K+), with e'+(y) := e- iK+ey, for y E P 3 . Now, we can formulate the desired
statement in the form of

Proposition 2.1. Let u be an element of H', and let 'p be the unique element of W(Q+; tc+) satisfying
(2.13), so that 'p has the representation displayed in (2.14); of course, if u happens to be a strong solution of
the purely interior problem corresponding to (Po), then (u, ') is the unique strong solution of the problem
(Po). Suppose that (un)°n)°=N is a sequence in HI converging weakly to u in H'. Construct the corresponding
sequence ('pn)n'=N in W(Q+; Ic+) according to, for n > N,

2p~(x) Jr- {Ex +-E.x+n+Ac+$tn` } dAr+

+ ew 4{Er+unJr+ n+ - E. +.A+(unJr+ n+)} dAr+ for each x E Q+. (2.16)
2 r+ n

Then, for each 3-index a, the sequence ('On,,)°=N converges to ',,, uniformly on each subset of Q+ that is
closed in R3. Further, the sequence (W1011).OO=N of far-field patterns converges to the far-field pattern 'Pa. of
'p uniformly on S1 .

Proof: We have, for each x e Q+ and n > N,

'P(X) - 'Pn(X)= iew J{E.+(u - u,)Jr+ . n+- E.+ Ax+((u-un)Ir+ n+)}dAr+. (2.17)
2 r+in

Now, choose any set F that is closed in R' and contained in Q+. Since Im K+ > 0 and the distance between
F and the compact set r+ := 8Q+ is positive, it is clear that E,'+Ir+ and E.`t are bounded on r+,
uniformly for x C F. Thus, by applying the Cauchy-Schwarz inequality to (2.17) and using the boundedness
of A,+ in L2(r+), we find that

sup 'P(x) - 'pn(X)f C e0+A,+(r+){c, + C2 11A,+11}1I(u - un)lIr+1L2 (r+) for n > N.
XEF 2
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wherein cl and c2 depend upon only F and tc+. The compactness of the Sobolev restricted-trace map

v F-+V from Hi into L2 (12+) and the weak convergence of (un)n'=N to u in H' then imply that the first

assertion of the Proposition is true for a = (0, 0,0). The proof for any other 3-index a can obviously be

carried through in an entirely analogous manner, since the corresponding partial derivatives can be computed

by differentiation under the integral in (2.14) and (2.16). The final assertion, concerning the convergence of

the far-field patterns, is established just as easily, by similar reasoning based on (2.15). N

In the applications of Proposition 2.1 that are pertinent to the present setting, we shall even have

available the norm-convergence of (un)n°=N to u in H' (cf. Theorem 4.1, infra), not merely weak convergence;

assuming some additional regularity for r+, we can sketch the proof of a correspondingly stronger result for

the convergence of the sequence ('pn).=N to so:

Proposition 2.2. Retaining the setting and notation of Proposition 2.1, suppose now also that £2 U£20 is
of type R3,v, while (Un)n=N converges to u in the norm of H'. Then 'p and the sequence ('p1)n'=N lie in
H 2 (Q+), with W, 'pc- = 'p in the locally convex topology of that space. Moreover, 'p and the sequence
60n)n0=N lie in Co 2 (Q+), and limnp Boo-, = 'p in that Banach space (so, in particular, the convergence is

uniform on Q+).

Proof: Now, we know, by Lemma 2.1, that (Un- Ir+ n+)n°°=N converges to ulr+ - n+ in the norm of H(2(r+).

We recall the definition of the double-layer potential-operator (restricted to Q+) f -* W+4 {f} on L2((r+)

(supra), and now define the single-layer potential-operator (restricted to Q+) f - V+ {f} on L2 (r+) by

V,+{f}(x) :=|E.+fdAr+ for x E Q+.

We have sufficient regularity of r+ to ensure that, according to Ref. 10, Arc+ IH2 (r+) maps H(2(r+) bound-

edly into HI2 (r+), and, by Theorem 2.16 of Ref. 13, that the double-layer potential-operator is bounded from

H (r+) into H 2, (?+), while the single-layer potential-operator is bounded from H2(r+) into H(2 +).
Combining all of these facts, in view of (2.14) and (2.16) it follows that 'p and (SOn)n=N are contained in

HI',c(Q+) with limn-, 'pr, = ' in that space (cf. (2.17)). Directly, the Sobolev Imbedding Theorem (The-

orem 5.4, Part II, of Ref. 9) allows us to assert that, for any bounded open set Q C Q+, 'pjQ and the 'pnjQ

are elements of Co,21 (£), with the convergence limrn- 'p, £Q = pI2Q in the norm of the latter Banach space.

Taking Q to be the intersection of Q+ with, say, a ball of sufficiently large radius, and accounting for the

results of Proposition 2.1 concerning the uniform convergence of the 'p, and their partial derivatives to 'p and

its partial derivatives in the exterior of the ball, we see that the 'p,. and 'p lie in the Banach space C° 21

and limn W 'Sn = 'p in the norm of that space. I

Returning to the general setting, we shall study the purely interior problem by setting up and analyzing

a weak version of it; this will also lead back in a natural manner to weak formulations for the original

problems (Po) and (P). Regularity results for solutions of the weakly formulated interior problem would

then allow us subsequently to return to the strong setting. As usual, the weak formulation arises from (2.9),

written in the form

|{A* U + eoW2u + f0 } * v dA3 + |{&A~ (u, V) - QOW2U * V} dA3

= | Tno[u] .vlrodAro+f f. vdA3 for u E H12 and v C H' (2.18)
rO sn.
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(with f, E Ho). Now, if u is a strong solution of the purely interior problem for (Po), as in Definition 2.2,
then we must have

j{&A,(uiV) -_ OW2 u . } dA3 + e+C 2K2- (A.+(ur+ . n+))Vlr+ . n+ dAr+

= |{t+ -(Y+ -iw){'p'r+ -A.,'pfl}n+} VIr+ dAr+ +| t- .Vlr_ dAr_
r+ Jr 

+J f0 -VdA3 whenever v E H'. (2.19)

This leads us to define the sesquilinear form o,(,.) on H' according to

o,,(u, v) :=| {A,(uV) - e-W2 u V} dA3 + e+C 2 4 (A.+(ulr+ . n+))Vlr+ n+ dAr+,

for u, v E H1, (2.20)

and, corresponding to selected functions f., t., and p' as in Terminology 2.1, the conjugate-linear functional
A, on H1 by

Av := {t+ - (,y+ - iw){o'pIr+ - Ar+.n+}n+ i Vr+ dAr, + 4 t_ VI,- dAr-

+j fo VdAs, for each v G H'. (2.21)

Then (2.19) is written concisely as o-,(u,v) = Av for v E H'; the weak formulation of the purely interior
problem corresponding to (Po) shall be set up on the basis of this equality.

It is also convenient to identify a linear manifold comprising complex amplitudes of weak nonradiating
modes, proceeding from (2.18). If un, E IV2,, then (2.18) shows that

In , {&A,(Uw,V)-QoW2 U,, V-}dA3 = O for every v C H, (2.22)

while u,, also lies in the subspace HOL+ given by

Hn+ := f{u E H' I ulr+ n+ = 0} (2.23)

(the closure in H1 of the collection of all u C C'(Q ) such that ulr+ n+ = 0). With this, we define the
linear manifold KnA0 ',, in H' by setting

:{u E H'.+ 1 (2.22) holds}. (2.24)

Then Kn .,, C KArn/. At least under sufficiently strong hypotheses of smoothness for F, we shall also have
KAS1.', C H2 , whence it shall follow that An2 = K ,, For example, in the extreme case in which Q£
is of type R', we shall have KAr,,, c C°°(?i); cf. Ref. 14. Proceeding as we did for , we denote by

(KnA,)(±)o the orthogonal complement of KA ,J, taken with respect to Ho, and introduce Mn -,, C H1 by

MQ ,,, := (A .)(-L)o n H'; (2.25)

Ml .", is a closed linear manifold (subspace) in H'. We shall show later that A(-,' is finite-dimensional,
and so also closed in both Ho and H1. Once this is known, just as before (cf. (2.5) and (2.6)) it will follow
that the direct-sum decompositions

Ho = Kn & (KV_ )(±)o (2.26)
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and
H' = NAl + Ml with ArA0,. nfMl 0 ,. = {o} (2.27)

are valid (of which the first is orthogonal). We still have the interior regularity result asserting that the

elements of )V./,@, have real and imaginary parts that are real-analytic in Q, so (1.27) holds in the classical

sense in Do for each urn E A\ ,,.

As already tacitly noted in Proposition 2.1, for the construction of the unique So C W(Q+; K+) satisfying

(2.13), we need know only that u E H'. This affords a simple means for providing weak formulations for both

(Po) and (P), based upon that for the purely interior problem for (Po). Precisely, the weak formulations

are given in

Definition 2.3. Recall Terminology 2.1. The function u is a weak solution of the purely interior problem

corresponding to (Po(fo, to} Ad )) iff u e Ml and

o,,,(u,v) = A,^,v for every v E H', (2.28)

with the sesquilinear form a,, and the conjugate-linear functional A,, defined by (2.20) and (2.21), respec-

tively. If u is a weak solution of the purely interior problem corresponding to (Po(f., t, A')) and 'p is the

corresponding unique element of W(Q+; K+) such that (2.13) holds, then the pair (u,'p) is termed a weak

solution of (Pq(f0 , t0, ')). Suppose further that the integral in (2.7) exists for every us, E Ar ,,, and it

is known that A\n i,, has finite dimension n, > 0; if n_, > 1, let fuY)}2.=l be an H0 -orthonormal basis for

A( 1.,. Then (u, Sp) is termed a weak solution of (P(f 0, t0, 'p'; F, T')) iff u can be written as in (2.8) and

(uo, ') is a weak solution of (Po(f 0 , t0" ,')).

Observe here that, for (Po), the requirement u C Ml.,,, constitutes a weak form of (1.35), while, for

(P), the condition that u have the form in (2.8) provides a weak realization of (1.36).

According to Terminology 2.1, we have been supposing that the piece of data to is in L2 (r 0); one
can relax this requirement by positing instead the inclusion to E H-12(r), provided that appropriate

modification is made in the definition of A,, in (2.21), viz., that the sum of the terms involving t+ and t- be

replaced by the more general expression (t., vlr.)I., involving the duality pairing for H2(r 0 ). The resultant

conjugate-linear functional A<, is again bounded on H', and the analysis of §4 can be carried through, mutatis

mutandis. For simplicity, we shall continue to suppose that to C L2 (r.).

It is clear that a weak solution of the purely interior problem corresponding to (Po) that is also known to

possess some additional regularity will be a strong solution of the purely interior problem for (Po). For, if u

satisfies the requirements placed on a weak solution of the purely interior problem for (Po) in Definition 2.3

and also lies in H2 , then u e M' 0 ,, (since the inclusion n2 C EV ,,, implies that (Nt C)(i)o c

(AWE >)(i)o)) while (2.18) and (2.28) (i.e., (2.19)) together imply that

-| ±^ A~uU e+ w2 u -f} v dA3 + 4 Tn° [u] * V-|r' dAr.

- |{-e+ c+ - (Ac+ (ulr+ .n+))n+ + t+-(7+ - iw){Si'lr+ } }vr+ dAr+

+ 4 t- . VIr_ dAr- for every v E H'. (2.29)
r_

Since the equality in (2.29) must hold, in particular, for every v E CO°(Qo), (1.24) follows (a.e. in Qo); with

the simplified form then taken on by (2.29), we conclude that (2.12) and (1.26) are true (a.e. on F+ and F-,

respectively). Thus, such a u has all of the properties demanded of a strong solution of the purely interior
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problem in Definition 2.2, and, moreover, leads directly to the strong solution for (Po) itself (as described
in the remarks following Definition 2.2) and to the strong solution for (P) (as in Definition 2.1). Observe
that we do not need to know here whether PA(,' and ,, coincide.

3. VARIATIONAL PROBLEMS INVOLVING A DEFINITE FORM WITH A COMPACT
PERTURBATION; THE GALERKIN METHOD

For the analysis of the weak formulation of the purely interior problem, we require some facts about
problems posed "in variational form;" in particular, for the construction of a convergent approximation
scheme, we shall use results of Hildebrandt and Wienholtz [6] concerning the Galerkin method.

Throughout this section, (H, (, *)H) denotes a separable complex Hilbert space, a(., ) a bounded
sesquilinear form on H, and A a bounded conjugate-linear functional on H. We are interested in studying
the solvability of the problem

find f E H satisfying o(f, h) = Ah for all h E H, (3.1)

and in establishing a viable and convergent scheme for the approximation of a solution (when at least one
exists), under certain hypotheses on the form Y. Of course, we know that there are uniquely determined a
bounded linear operator T, on H and an element 9A of H such that

a (g, h) = (Tag, h)H for all g, h E H (3.2)

and
Ah (gA, h)H for all h E H, (3.3)

so that (3.1) is equivalent to the operator problem

find f E H satisfying Tef = gA, (3.4)

The latter equivalence is useful for examining the solvability of (3.1), but we prefer not to base the com-
putations of a numerical scheme upon the availability of explicit analytical forms for T, and tA since such
formulae may be difficult to deduce.

By PV(L) we mean the null space of the operator or functional L. P/,(a) is the subspace of H defined
by

Alla := {g C H I a(g, h) = 0 for all h C H}

(throughout, a subspace of a Hilbert space is defined to be a linear manifold that is closed in that Hilbert
space). The (bounded) sesquilinear form o-*(, ) adjoint to a is defined by

a*(g, h) := a(h, g) for g, h E H;

oa is represented by T,*, the (Hilbert-space) adjoint of Ta, in the same way that a is represented by Ta.
Corresponding to the adjoint form, we have

1(o-*) := {g C H I a*(g,h) = 0 for all h C H} = {g C H I u(h,g) = 0 for all h C H}.

With (3.2), it is easy to check that P/,(a) = P/(T0) and P/,(a*) = P/(T*).

Invariably, we assume that o(, .) is of the form 6(., ) + c(., .), in which the sesquilinear forms 6 and Ic
are bounded on H, with 6 definite and K compact. By the requirement of definiteness for 6, we mean that
there exists c6 > 0 such that

lb(gg)l > C611g1l1 for all g C H; (3.5)
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by the requirement of compactness for Kc, we demand that whenever g and h are elements of H and (gn)-n=O
and (hn)n-=o are sequences in H converging weakly to g and h, respectively, then (K(gn, hn)) 00 converges
in C to K(g, h). Of course, a compact form is necessarily bounded. For the uniquely determined bounded
linear operators Tb and T, on H such that

6(g, h) = (Tag, h)H and K(g, h) = (T, g, h)H for all g, h E H, (3.6)

we know then that T6 is definite (I(Tbg,g)HI > C61191| for all g e H) and T,. is compact (since gIT fjjI =

ic(f, TJf) for f C H and the boundedness of Tl certainly implies that it maps weakly convergent sequences
into weakly convergent sequences). Under these hypotheses, the solvability of the problem (3.1) is completely
characterized by the Fredholm Theorems that are available for it in the form of the following statement (for
clarity, it is desirable to provide a proof of these facts showing that their validity depends on only the
form hypothesized for a, and is independent of the considerations involved in establishing an approximation
scheme; cf. Ref. 6).

Theorem 3.1. Let the sesquilinear form a on H be the sum 6 + Kc of bounded sesquilinear forms, with 6
definite and Kc compact.

(i) The dimensions of P/,(o) and P/,(u*) are finite and equal.

(ii) If A is a bounded conjugate-linear functional on H, then there exists some fo E H such that

oa(fo, h) = Ah for all h E H (3.7)

iff the ("solvability") condition
P/ (o.*) c P/(A) (3.8)

obtains, in which case the collection of all solutions of (3.1) is given by fo +P1/(a). Consequently, there
exists a unique solution of (3.1) iff P/(o) = {O} (or, equivalently, iff P/(o*) = {0}).

(iii) Let M be a subspace of H that is complementary to Pl(o), i.e., such that

P/V,(oa) n M = { and H = Pl(a) + M. (3.9)

Then, whenever A is a bounded conjugate-linear functional on H such that (3.8) holds, there exists
precisely one corresponding fAM C M for which

oJ(fAM, h) = Ah for all h E H; (3.10)

moreover, there exists M > 0 with the property that, for all such A

J~fAMJJH -< M||A|| (3.11)

(with hAilJ denoting the norm of A).

Proof: Adhering to the notation already introduced, we have Te = T6 +Ts, with T6 definite and T,, compact.
It is easy to see that the bounded operator T6 is bijective. Indeed, the inequality 1(T6g,g)H1 > C611911)

holding for all g E H, gives JIT6g11H > C6j1g11H for all g, whence we conclude that T6 is injective and has
closed range R(Tb) (as well as bounded inverse on 7Z(Tb) into H). Clearly, the same reasoning can be effected
for T. Thus, IZ(Tb) = P(T6*)' = H (and R.(T.*) = P/(Tb)' = H), proving the claim. Now we can write,
e.g., T, = T 6(I + T7-'T.) and argue in the well-known manner, from the validity of the Fredholm Theorems
for a perturbation of the identity by a compact operator, to conclude that those same statements are valid
for T,. Having secured this, all of the assertions of the theorem follow from (3.2) and the equivalence of
(3.1) and (3.4). Thus, (i) holds, in view of the equalities P/,(o) = P/(Ta) and P/l(a*) = P/(T,*). Further,
there exists fo E H such that (3.7) is true iff Tafo = gA (cf. (3.3)), iff 9A E P(T*)' = XP(o*)J, iff
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Ah = (9A, h)H = 0 for all h e NP/(u*), iff (3.8) holds. This proves (ii), the final assertions concerning the
collection of all solutions of (3.1) and the existence of a unique solution now being obviously true. Finally,

for (iii), let fo C H satisfy (3.7), wherein A is a bounded conjugate-linear functional on H satisfying (3.8)

(such an fo existing by (ii)). Writing fo = f, + fAM, with f, E C P(a) and fAM E M, then (3.10) clearly

holds, and fAM is the unique element of M satisfying (3.10) since MnPVl(u) = {0}. This reasoning implies
that the bounded operator TJ IM (the restriction of Ta to M) maps the subspace M bijectively onto the

subspace P1 (a*)' = P/(T<,)', and so has bounded inverse defined on the latter. With M denoting the norm

of this inverse, since TafAM = 9A, inequality (3.11) follows upon noting that 119AhIH = jhAil. I

For the construction of approximations to solutions of the problem (3.1), we first consider the special

case in which Pl,(o-) is the trivial subspace, then treat the general case in which P/,(o-) may be nontrivial,

under an additional hypothesis on a (that will in fact obtain in our subsequent application of the Galerkin

method).

Theorem 3.2. Let the sesquilinear form a on H be the sum 6 + Kc of bounded sesquilinear forms, with 6
definite and K compact. Suppose further that P/,(a) = {0}. Let A be a bounded conjugate-linear functional
on H, and denote the associated unique solution of (3.1) by fA. Then fA can be convergently approximated
in the norm of H by the Galerkin method for (3.1), by using as coordinate functions any family that is linearly
independent and complete in H. That is, suppose that {h,,}Oo I is linearly independent and complete in H.
Then there exists a positive integer N such that for n > N the system

n

ES (hk, hi)Gk = AhA, 1 = 1, .. ., n, (3.12)
k=1

possesses a unique solution (4n))'.1 and the resultant sequence (fUn := :,=l ~(n)hk)°n=N converges to fA

in the norm of H. In fact, there exists a positive c that is independent of A and such that

hlfA fnlH < c in~f IfA- fJIH for n > N. (3.13)

in which H,, is the linear span of {hk} =J.

Proof: Retrace the reasoning adduced in the proofs of Theorem 1 and Remark 3° of Ref. 6, mutatis mutandis,

replacing the "bilinear" form B and linear functional L of Ref. 6 with the sesquilinear form a and conjugate-

linear functional A, and accounting for the minor difference between the form of the variational problem given
in Eq. (1) of Ref. 6 and that of (3.1). The error inequality (3.13) results from an inspection of the proof of

Theorem 1 of Ref. 6. We have written "bilinear" here in referring to the form B of Ref. 6 because there seems
to be some confusion in terminology, so one must take some care in working through the developments of

Ref. 6. Evidently a complex Hilbert space is considered there, while the form B, hypothesized as "bilinear,"

seems to be treated as sesquilinear in all of the reasoning subsequent to the proof of Theorem 1 of Ref. 6. It
is possible that the term "bilinearity" in Ref. 6 is actually used to indicate the property that is more properly

designated "sesquilinearity"; if this is so, then there has been omitted a sign of complex conjugation in Eq. (3)
of Ref. 6. With the latter change, one can read Ref. 6 with the term "bilinear" replaced by "sesquilinear"

throughout. I

When Pl(o) is nontrivial and the solvability condition (3.8) is fulfilled, Hildebrandt and Wienholtz [6]

base their method for approximating a solution of (3.1) upon application of the Galerkin method to the

"symmetrized" problem

find f' C- H satisfying &(f',h) = Ah for all h c H, (3.14)
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in which a is the (Hermitian-symmetric) form corresponding to Ta T,, given by Ca(g, h) := (Ta Tg, h)H =

u(T*g, h). They show that the Galerkin method can be applied to the problem (3.14) to produce approxima-
tions converging to the unique solution of this problem that also lies in the subspace P/(T*)' = P/(TaT,*l;
if fAj is this solution, then f := TefA is a solution of the original problem (3.1), unique to within an element

of P/(T,). Although this scheme may be the best one available in the general case, it has some unattractive
features, e.g., one must know how to determine the action of Te on the selected coordinate functions. Of
course, a method based upon computation of values of the original form a would be much preferred; in at
least one special case, viz., when P/,(ac) = P/,(o-*), such a method can be employed (note that this condition
is automatically satisfied if a is Hermitian symmetric). Still, for a complete resolution of the problem one
can evidently not escape the necessity for determining P/(u), although some information can be salvaged
without addressing the latter task; cf. the remarks following the proof of the next theorem.

As a preliminary, let us recall some terminology. Suppose that M is a subspace of H that is comple-
mentary to the subspace P/,(o-), i.e., such that (3.9) holds. Then the linear operator PM : H - H defined
by

PMAh:= h 2 , wherein h = hA + h 2 with h, E C/l(), h2 E M, for each h C H

is bounded and also a projection (i.e., satisfies PM = PM), called the operator of projection onto M along
Pl(oa). Obviously, A/(PM) = P/,(a), while I - PM is also a bounded projection operator, carrying H onto
P/(a) ("along M"), with P/(I - PM) = M. Of course, PM is self-adjoint, i.e., an operator of orthogonal
projection, iff M = P/(o-) 1 .

Theorem 3.3. Let the sesquilinear form a on H be the sum 6 + KC of bounded sesquilinear forms, with 6
definite and Ke compact, and suppose that the equality

P/ (o) = P/(o.*) (3.15)

is known to hold. Let M be a subspace of H that is complementary to P/1(r), as in (3.9), and denote by PM
the operator of projection onto M along P/ (a). Suppose that A is a bounded conjugate-linear functional
on H for which the solvability condition (3.8) is valid. Then the unique fAM E M satisfying (3.10) can be
convergently approximated in the norm of H by use of the Galerkin method applied to the form a. More
precisely, let {Ah,}"0 1 be a family in H such that {PMhA,} 1± is linearly independent and complete in the
Hilbert space (M, (, ')H). Then there exists N such that for n > N the system (3.12) possesses a unique
solution (~( ))'=1, and the resultant sequence (fnk := rn=l ~(r0PMhk)°'=N converges to fAM in the norm
of H. In fact, there exists a positive c independent of A and such that

lhfAM-fIlH<c5 inf IIfAM-fllH for n > N. (3.16)

with H,. denoting the linear span of {hk} k'=

Proof: As noted in the statement of the Theorem, (M, (, ')H) is a Hilbert space, since M is assumed to be
closed in H. With crM and AM denoting, respectively, the restrictions of oa to M x M and A to M, consider

P/,(oM):={gEM IoM(g,h)=O forallhEM}.

Suppose that g C P/,(oM): then we compute

a(g, h) = o-(g, PMh + (I-PM)h) = o(g, (I-PM)h) = 0 for all h E H,

since (I - PM)h E P/,o(a) = P/i(o-*), by (3.15). Thus, g E M n P, (a) = {0}, and so P/,(o-M) is the
trivial subspace. Consequently, it is clear that all of the required hypotheses are fulfilled so that we can
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apply Theorem 3.1(ii) and Theorem 3.2, with H, a, and A replaced there by (M, ( -)H), CM, and AM,
respectively. We conclude first that there is a unique solution of the problem

find f C M such that um(f, h) = Amh for all h C M;

this unique solution clearly coincides with the unique element fAM e M satisfying (3.10), since the latter
holds, in particular, for every h e M. Further, according to Theorem 3.2 and the given properties of the
family {hA,}°,I, there exists N such that for n > N, the system

n=~~~~

E Za(PMhk, PMhA)(k = AMPMh = 1, ... ,n, (3.17)
k=1

has a unique solution ((n))'n=1, and the resultant sequence (f,. := EXn=l fn)Pmhk)' N converges to fAM
in the norm of M, i.e., in the norm of H. But, because of (3.15) and (3.8), we find that

1M(PMhk, PMhl) = u((I - PM)hk + PMhk, (I - PM)hi + PMhA))= u(hk, hi), k, I = 1, 2,3,...,

and
AMPMhA = A((I - PM)hA + PMhA) = AhA, I = 1, 2,3,...,

so the system (3.17) coincides with the system (3.12). Finally, the error estimate (3.16) followsfrom (3.13). I

We conclude this section with a remark that will be important for the application of Theorem 3.3
that we have in mind, if we should content ourselves in the original fluid-elastic interaction problem with
the approximation of the fluid field alone. Maintaining the setting and notation of this Theorem, suppose
that H is some normed linear space, L : H -* H is a bounded linear operator, and we are interested in
approximating LfAM in the norm of H. If it should be the case that

P/,(a) C P(L), (3.18)

then obviously
n n

Lf, = Zn )LPmhk - (kn)Lhk, for n > N. (3.19)
k=1 k=1

while the sequence (Lfn)n'=N converges to LfAM in the norm of H. In our application, we shall have
H = H', o = A,,, H = H2(F+), and L given by u -4 ulr'+ . n+, for u E H' (cf. Lemma 2.1), choices for
which (3.15) and (3.18) shall be shown to hold. The point here is that when (3.15) and (3.18) are fulfilled, we
can convergently approximate LfAM with very little explicit information about the subspace PXl(a), clearly
a desirable feature. Indeed, we need only ensure that our choice of coordinate family {Ah,}C' 1 is such that
{PMh,.}n°°=I is linearly independent (i.e., has the property that the only linear combination of a finite number
of elements of {h,}' 1 that belongs to P/,(a) is the trivial linear combination, with all coefficients zero) and
complete in (M, (' ')H); in the later application, we will even know that the required completeness property
follows once we have selected a family {h,.}n' L that is complete in H itself (cf. Lemma 4.3, infra). Then,
according to (3.12) and (3.19), the computations necessary to construct approximations converging in H to
LfAM can be accomplished without further regard for the exact nature of P/, (a). In general, however, for the
computation of approximations converging in H to fAM itself (which will correspond in our application to
the approximation of the elastic-field portion of the solution of the interaction problem), evidently we cannot
avoid confronting the difficult and expensive eigenvalue problem that must be solved to identify P/,(u) and
so determine how to compute the action of the projection operator PM. Of course, if we were to know by
some other reasoning that P/ (a) = {O} (which will correspond in the upcoming application to A',,, = {O}),
then these difficulties disappear.
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4. SOLVABILITY AND APPROXIMATION-OF-SOLUTION RESULTS FOR THE WEAK
PROBLEMS

In §2, we specified how a solution of the weak version of (P) is to be obtained from a weak solution
of the purely interior problem corresponding to (Po) with data derived from that of (P). Thus, we study
exclusively the weak form of the interior problem corresponding to (Po). Our first goal in this section is
a description of the state of affairs concerning the solvability of the latter problem and the applicability of
the Galerkin method for the generation of a sequence converging to the unique solution when the problem
is uniquely solvable. We are restricting our considerations here, as in §2, to the case in which to C L2 (F,),
although the statement and proof of the following Theorem 4.1 can be modified in an obvious fashion to
permit the weaker hypothesis to e H-(1 0 ).

Theorem 4.1. Recall the regularity conditions placed on Q2, the conditions Re K+ > 0 and Im K+ > 0

fulfilled by K+, and the restrictions A > 0, p > 0 imposed upon the Lamen parameters.

(i) The dimension of the linear manifold P,/A, is finite. In particular, p.,,,, is closed in both H0 and
H', and we have the direct-sum decompositions given in (2.26) and (2.27). Thus, there is defined the
(bounded) operator PMi : Hl -* Hl of projection onto the subspaceMl , along afl,.

(ii) There exists a weak solution of the purely interior problem corresponding to (Po(f0, to,' p')), as in
Definition 2.3, iff the associated conjugate-linear functional A,, on H' vanishes on An ,,,, i.e., iff

|(t+-(t+f n+)zi+) JIr+ dAr+ + |t. JIr- dAr + |fo, U dA3 = 0

for every u,, E n a} (4.1)

When this condition holds, there exists precisely one weak solution u (E Ml ,,) for that problem; the
Hl-norm of this solution has the bound given by

|Il'i"H < MIIAWI1 C M {IlfolHo + hltohIL2(r.) + IY+ -iwI(jl'p'lr+I IL 2(r,) + IIA.+1I IJo0,IliL 2(r+))}

(4.2)
for some positive M that is independent of the particular set of data {fo, to0 , V'} chosen as in Terminol-
ogy 2.1 and satisfying (4.1); here, JlA,',1 is the norm of A,, as an element of the anti-dual of H', while
lIA.+11 is the norm of A,+ acting in L2(r+).

(iii) Suppose that the solvability condition (4.1) holds. Then the unique weak solution u of the purely
interior problem corresponding to (Po(f0, to, V')) can be convergently approximated in the norm of
H' by using the Galerkin method. More precisely, suppose that {w,}, I' is a family in H' such that
{IP wnln'=l is linearly independent and complete in the subspace Ml,,,, of H1; here, completeness
of {wn }n'=l in Hi will suffice to imply the completeness of {PMiw,.}n0 in Ml a,. Then there exists
a positive integer N such that for n > N. the system

n

E'Y a(Wk, Wl)(k = A,,, w I =: 1,.. .. n, (4.3)
k=l

possesses a unique solution (4(n)),n=, and the resultant sequence (Un := Mlf kn)P.Mwk)n'=N con-
verges to u in the norm of H1. Moreover, the sequence (u,. r,+ fn+).=N converges to ur+- n+ in the
norm of H-(F+); since

u,.lr+ n = Zk4 n)wkIr+ n+ for n > N. (4.4)
k=l
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it follows, in view of the form of the systems in (4.3), that this sequence can be constructed even in
the absence of explicit information concerning the subspace PVA0,, and the operator PMi. Finally, the
following error bounds hold for n > N. c and c' denoting positive numbers that are independent of the
particular set of data {f,, t., 'p'} chosen as in Terminology 2.1 and satisfying (4.1):

1|U - U,|H1 < C infw |U - VIIHI,

and

II(u - u)r+ -n+l,(r+) < c EPinfW lu - VIIH,

wherein Wn denotes the linear span of {Wk}'k=l 

Concerning the operator PM1, let us interject here an explanatory note: since /A0 ,, C Hi, it is clear that
the operator on Ho of orthogonal projection onto (P/A ~)(±)o carries the linear manifold of elements in H'
into itself; in view of (2.25) and (2.27), the restriction of this Ho-orthogonal projection operator to the linear
manifold of elements in H', when regarded as acting in H', is just the (nonorthogonal projection) operator
that we have denoted by PM,.

We shall make some remarks on the statements of Theorem 4.1, supposing that it has been proven.
Assuming that the solvability condition (4.1) is fulfilled, it is asserted that there is a unique weak solution
u of the purely interior problem for (PO), and a method is provided for constructing a sequence converging
to this solution in H'. To actually base a computation on this method, we must employ a family {w,.}°°
for which the corresponding family of projections {PM1wn}°n'=, is linearly independent and complete in the
subspace Ml a, of H1. Once we have secured such a family {w,}'.. 1 , the numerical solution of the systems
in (4.3) requires no further knowledge about the subspace P.,,,, but evidently we cannot avoid having to
find the projections PM lw, for n = 1, 2, 3,..., if we insist on approximating the weak solution u itself, i.e.,
if we wish to compute the Un for n > N. However, a further implication of the Theorem is that we shall be
able to approximate convergently in H2(F+) the normal component uJr+ n+ of the restricted trace of u, i.e.,
that we can compute the un Jr+ -n+, without troubling to find those projections. In turn, we shall be able
to approximate the function 'P E W(Q+; Kc+) satisfying (2.13), the fluid-field portion of the weak solution of
(P) itself, by using Proposition 2.1 (cf. (2.16)). Consequently, we shall be able to calculate approximations
to the fluid-field portion of the fluid-elastic interaction with little information about the possible complex
amplitudes of nonradiating modes for Qo and w. It suffices to ensure that our chosen family {wnI} °°= is, say,
complete in Hl and such that {Pmiw,.} 1. is linearly independent, i.e., such that any linear combination
of a finite number of elements chosen from {wn}C, that lies in PA0,, is necessarily the trivial combination
with all coefficients equal to zero (cf. Lemma 4.4, infra). We shall remark later, in Proposition 4.1, on the
selection of coordinate functions fulfilling this latter requirement.

The proof of Theorem 4.1 will be carried out by checking that we can apply to the present setting the
abstract developments of the preceding §3; this will be facilitated by the establishment or citation of certain
preliminary results, to which we proceed. The first statement is termed "the coercivity of strains" by Necas
and Hlavicek [8], but is more commonly known as "Korn's second inequality" (cf., e.g., Fichera [14]).

Lemma 4.1. Recall that Qo is assumed to be a Lipschitz domain. There exists a positive number co,
depending upon only Q0, such that

6jk[V16jkM + V -V} dA3 > ColIVI2 for every v e H'. (4.5)

Proof: The statement is proven in Theorem 3.4 of Ref. 8 for the case in which the underlying Sobolev space
comprises R 3 -valued functions. But it is clear that this also suffices to cover the present situation, in which the
elements of H' are C3 -valued, since we have, for v E H', the equalities -jk[V]6jk[V] = Ejk[ReV1Ejk[Rev] +
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eJk[Imv]eJkEImv] and IIVlIik = IiRevIIHk + IIImvII2k for k = 0,1. Alternately, one can appeal to the
reasoning in Ref. 14, carried out under the assumption that the domain £,, satisfies merely a "restricted cone
hypothesis" (and again for R3-valued functions). I

For the sesquilinear form a,, defined on H' by (2.20), the associated "linear manifolds of degeneracy"
NA1(a-U) and .VA(a) in H' are defined as in §3. Recall the definition (2.24) of the linear manifold n of
complex amplitudes of weak nonradiating modes in H'.

Lemma 4.2. NA0,, = All (a) = Ni(a*).

Proof: Let us,/ E A, e.,(), so that ur E H' and a,,(un, v) = 0 for every v E H'. In particular, ao,(u,,u) =

0, and this implies, in turn, from (2.20), that

Im(4 2A, +(u,,Jr+ .n+),u Ir+ n+)L2 (r+) = 0. (4.6)

By (2.1), we must have u,,Jr+ . n+ = 0, so that u,, belongs to Hon+ (cf. (2.23)). But then (2.22) is true,
as well (cf. the form of a-,, in (2.20)), whence the inclusion up, E nA,n, results. Thus, Nl(r,,) C n ,,,
The reversed inclusion obviously holds, so NA1(a,,) = En,,,. Similarly, the assumption uw,, e .i(o-,), i.e.,
u,, E H' and o-,,a(v,u,,,) = 0 for every v e H', leads again to (4.6), from which the reasoning can be carried
through as before, with trivial modifications, to arrive at the equality N,1(a,) = AnA0,h in view of the fact
that the first integral appearing in the definition of ao,, generates an Hermitian-symmetric form on H'. I

Lemma 4.3. If fwl} 1 is a family complete in H', then the corresponding collection {PMlwn},'LI is
complete in the Hilbert space (M',, (' ')H'), wherein PM1 : H' -* H' denotes the operator of projection
onto Ml Go along NAn,,.

The statement of Lemma 4.3 anticipates the fact that H' has the direct-sum decomposition given in
(2.27). Therefore, we choose to defer the proof of this Lemma until after we have established that nA, is
finite-dimensional in the course of the proof of Theorem 4.1 (without using Lemma 4.3!).

Proof of Theorem 4.1: At the outset, we observe that the sesquilinear form oa,, and the conjugate-linear
functional A,, are obviously bounded on H'. We wish to show that a,,, can be written as the sum of a definite
form and a compact form, i.e., that it satisfies the fundamental hypothesis required in the developments of

§3. To this end, let us define the sesquilinear forms 6(., ) and K(, -) on H' by setting

6(u, V):= {&A,x(u, V) + 2pu V} dV 3 1

j for u, v E H.

Kc,,(u, v) := (24 + e0 w2)J u iVdA3 + e+C2 K2j (A+ (ulr+ n+))Vjr+ . n+ dAr+ 4
ino r+

Clearly, a, = 6 + tc,. The definiteness of (the Hermitian-symmetric form) 6 follows from Lemma 4.1, upon
recalling that A > 0 and 1p > 0, for, we can write

6(v, V) = j {AIekk[v] +2pEjk[v]ejk[V]+ 2pv V} dA3 > 2 j {ejk[V]ejk[V] + V V} dA3

> 2p/c, IIvI2 for v E H1. (4.7)

The compactness of tc,, is a simple consequence of the compactness of both the natural injection map carrying
H' into Ho and the operator v - vr+ n+ taking H' into L2 (r+) (for the latter, cf. Lemma 2.1(i)), coupled
with the boundedness of A,,+ on L2 (F+). We remark that the compactness of A,,+ is not needed here, but
could have been used to produce the same conclusion if we knew only that v i-* + n+ is bounded from
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H' into L2 (r+). Thus, we can apply Theorem 3.1. By doing so, we find first, from statement (i) of that
Theorem, that

dimP/ A , = dim/l(,,,) = dimP/l(-*,) < co, (4.8)

having also used Lemma 4.2 to get the first equality here. Moreover, by Theorem 3.1(ii), there exists some
u E H' satisfying (2.28) iff I,(o-) c P/(AU), or, again by Lemma 4.2, iff P c P/(Aw), an inclusion that
is equivalent to the explicit condition given in (4.1), in view of the definitions in (2.21), (2.23), and (2.24).
Now we know, in particular, that PA,/A is closed in Ho (and in H'), so (2.26) holds, whence (2.27) follows:
M'O s, is a subspace of H' that is complementary to AP/(o-,,) (=P/Ai,). By the direct-sum decomposition of
(2.27), there is induced the (bounded) projection operator PMi of H' onto M' ,,, along n/a, (= APl/(o-.)).
Taking M = Ml.,z, in Theorem 3.1(iii), we can assert, when (4.1) obtains, that there exists precisely one
U C mlO@ that fulfills the requirement (2.28), and so provides the unique weak solution of the purely
interior problem corresponding to (Po); (3.11) implies that the H'-norm of this element has the bound given
in (4.2) (with M independent of the data generating Au,,), since it is easy to see from (2.21) that hlAtII, the
norm of A, as an element of the anti-dual of H', is less than the number in brackets on the right in (4.2).
This completes the proof of (i) and (ii).

To establish (iii), in which we are given that (4.1) holds, we denote by u C Ml @ the unique weak
solution of the purely interior problem for (Po). We wish to invoke Theorem 3.3, making the obvious
identifications H = H', C = - ,, M = M' X, etc; this is permissible by the facts discovered in the proof of
(i) and (ii) and by Lemma 4.2 (giving (3.15)). With the additional use of Lemma 4.3, all of the conclusions
of (iii) now follow immediately. For example, the convergence of the sequence (unJr,+ . n+)°=N to upr+ ln+

in the norm of H2(r+) results simply from the convergence of (U,)n=N to u in the norm of H' and the
boundedness of the operation v -* vlrj+ n+ on H' into H2(F+) (Lemma 2.1(ii)). The equalities of (4.4)
are true because (I - PM1)wk lies in P,/0 , for each k, so that Wklr+ n+ = (PMlwk)lr+ . n+. Concerning
the error estimates displayed, the first is a direct result of (3.16), and the second follows from the first (by
Lemma 2.1(ii)). I

Finally, we give the

Proof of Lemma 4.3: Recall the Hermitian-symmetric sesquilinear form 6 defined on H' in the proof of
Theorem 4.1. Inequality (4.7) shows first that 6(., ) is an inner product on H', and then, when combined
with the boundedness of 6, that the norms induced by 6(.,) and (., .)Hi on the complex linear space of
elements in H' are in fact equivalent:

2pcoIJvIIHi < 6(v, v) < c' JII~vhl for v C H',

for some positive c'. By Ha, we denote the collection of elements in H' equipped with the inner product
6(., .). Then He is complete along with H', and the two Hilbert spaces are isomorphic qua Banach spaces;
a family is complete in H' iff it is complete in H'. The linear manifold MQ (A is closed in H,, since we
already know that it is closed in H'; a family is complete in the Hilbert space (M i (, )Hi) iff that family
is complete in the Hilbert space (Ml,^, 6(, )).

Let us suppose, for the moment, that the inclusion

M'n,, C (P l(4.9)

has been shown to hold, wherein (PAr ,)(L) 6 indicates the orthogonal complement of PAr , in H', and
check that the claim of Lemma 4.3 follows therefrom. Thus, suppose that {w,.1' 1 is a family complete
in H'; then it is also complete in H1. Let u be an element of MA4U that is 6-orthogonal to the family
{PM'wn,}00=1 of projections:

6(u, PMlw,) = 0 for n = 1, 2, 3, .
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Then, since (I - PM1)wn E P/A0(n, for n > 1, with (4.9) we get

6(u, wn) = 0 for n = 1, 2,3,...,

and so conclude that u = 0. This shows that the collection {PM1w,w}°n°I is complete in (M _,,6(, )),
whence it is also complete in (MnhL, (.- *)Hp)-

Therefore, for the completion of the proof, it is sufficient to verify (4.9). Then, let u C M' ,,,, i.e.,
by (2.25), let u E H' and u u, dA3 = 0 whenever up E PA ,W. As a consequence, according to the
definition in (2.24), we must have

I 9A,\(U@, u) dA3 = J {,,, (U., U) - QoW2
Uw * U} dA3 = 0 for every uC ECP ,. (4.10)

Clearly, then, 6(u, u,) = 0 whenever u, is in 4 implying that (4.9) is correct.

Before leaving the proof, we note parenthetically that equality actually obtains in (4.9):

ml i,, = (XI )()6

Indeed, if we suppose that u C (P ,J±)6, i.e., that u E H' and

| {£ ii(Uw, ) + 2pu . ii} dA3 = 0 for every us E C 0 z,

then the latter equality together with the second equality in (4.10) show that fn u,, -UdA3 = 0 for every

u, C P.,,, so U C n(P ) fl H' = M41,,. I

Let us return to the linear-independence question: we wish to know useful sufficient conditions on a
family {w,}°n°= C H' under which we shall be certain that {Pmlw,.}°L, is linearly independent. It is quite
simple to prove that this linear independence obtains for any such family that is itself linearly independent
and comprises piecewise-polynomials, as in the usual applications of the finite-element methods. We begin
by recording an obvious necessary and sufficient criterion for the linear independence of a collection of
projections {PM'w,}Jn=1,

Lemma 4.4. Let {wn}n°=, be a family in H' and PM, the operator in H' of projection onto M1,,, along

PA i,,. Then {PMIWnn.1'l is linearly independent iff for each positive integer N, the inclusion EN aanwn E
,,, for some {an} n=I C C implies that a, = = aN = O. In particular, the linear independence of

{fw} nc=L is necessary for the linear independence of {PMlw,1}'n=1

Proof: For the necessity, suppose that {PM'wn}l° - is linearly independent, let N be a positive integer,
and let {a,}'.., be a complex set with E>N 1 anwn E iv 0 0 2. Then EsNI anPM'wn = 0, whence a, =

- aN = 0, by the linear independence of the family of projections. In particular, the vanishing of

EnN=1 anwn gives a, = = aN = 0, so {wn}°n=l is linearly independent. For the sufficiency, let the
condition hold, and suppose that En>= anPM'wn = 0, for some positive integer N and complex set {an}Nn=1.
Then FnN=l anwn e PAr ,,, so we must have al = aN = 0, implying that {Pm1w}. 1o> is linearly
independent. U

As usual, by a (C3 -valued) polynomial in R3 we mean a function on R3 of the form x '-+ Zo<IaI<K C.Xc,

for some nonnegative integer K and collection {c.}o•<I<&K lying in C3 ; the standard notation x0 :=
x" 2x1 3 is used here, for a 3-index a = (ai, a2 , a3 ) and an x C R3 . A C3 -valued function w defined

, a2 3 s s
A3-a.e. in Qo is said to be a piecewise-polynomial in Qo iff there exists a family {f}jJ, of pairwise-disjoint

open subsets of Qo such that the complement Qo \ UJI O(j has A3-measure zero and each of the restrictions
wiOj, j = 1,.. . , J, coincides in 0j with some polynomial (perhaps depending upon j).
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Proposition 4.1. Let the family {w,}nl, lie in H1, and suppose that each wn is a piecewise-polynomial
in QO. Then {Pmiwn},.} is linearly independent if {ww,}°' is linearly independent.

Proof: By Lemma 4.4, we need only demonstrate the sufficiency. Then, let {w,}n,}° be linearly independent.
Let N be a positive integer, {an }n$~ C C, and suppose that nQ=l anwn E P/(X}; according to Lemma 4.4,
we must show that a, = * = aN 0. Now, as already pointed out in §2, each element of n/A,,, has real-
analytic real and imaginary parts, and is a classical solution of (1.27), so n0 = anWn has these properties.
Since each wn is a piecewise-polynomial in Q2, it is easy to see that we can find an open subset of Q2o
in which EnN anwn coincides with a polynomial. Therefore, by the uniqueness theorem for real-analytic
functions (cf., e.g., Ref. 16), EN=, aw, must coincide with that polynomial throughout QR. Consequently,
the sum must vanish in 2, since (1.27) has no nontrivial polynomial solutions (because eaw2 > 0). Now the
equality En= 1 anwn = 0, coupled with the linear independence of {wn}n=L,, implies the desired conclusion
al = .=aN=0. I

Lemma 4.3 and Proposition 4.1 imply that the computation of approximations to the fluid-field portion
of the unique weak solution of the fluid-elastic interaction problem (P) (corresponding to data fulfilling the
requisite solvability condition) can be carried out in complete ignorance of the dimension of P/Atif we select
the family {w,}°' of coordinate functions to comprise piecewise-polynomials in Q., taking care to ensure
only that the particular such family chosen is complete in Hi and linearly independent. But the denseness
of H2 in H' and standard results from the theoretical foundations of finite-element methods concerning
the interpolation of elements in H2 by appropriate piecewise-polynomials in H' (cf., e.g., Theorem 8.2.2 of
Ref. 17) show how to construct coordinate families of piecewise-polynomials in Q. that are also complete in
Hi. Of course, none of this helps in overcoming the difficulties involved in computing approximations to the
elastic part of the weak solution of the problem when either it is known that PA0n,, is nontrivial or there is
no a priori assurance that PA0,. = {0}.

5. ON THE DERIVATION OF THE INTERIOR AND EXTERIOR LIMITING-AMPLITUDE
CONDITIONS

This section is devoted to the promised motivation for accepting (1.34) and (1.36) as limiting-amplitude
conditions, i.e., under sufficiently stringent assumptions concerning the asymptotic approach to a time-
harmonic state, as conditions satisfied by the assumed-to-exist complex limiting amplitudes u and 'p of the
(assumed-to-exist) solution (U, 1) of the fundamental initial-value problem governing the time-dependent

fluid-elastic interaction, as described in §1. Actually, the interior and exterior aspects can be treated essen-
tially separately; specifically, we shall provide the desired assertions in the form of two theorems, the first
concerning solutions of the damped-wave equation (1.10) (and providing a basis for taking the Sommerfeld
condition (1.34) as the appropriate limiting-amplitude condition for any boundary-value problem for (1.23),
with K+ as specified), the second involving solutions of the Navier equations (1.11).

Consistently, we shall denote by d+(x) the distance between a point x E R3 and IF+:

d+(x) := dist(x, 17+) := min ly - xl.
YE+ r

For brevity, in this section we shall write c and -y in place of c+ and y+, respectively.
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Theorem 5.1. Let Q+ C RI be as specified in §1 and §2. Thus, Q+ is connected and the complement of
the closure of a bounded and connected open set of type ?2; as before, set r+ := Q+. Let c > 0 andy E C,
with either y = 0 or Rey > 0. Let lb E C2(Q+ x R) satisfy

-A$ + 1 $D, + 1 (D,44 = 0, in Q+ x R, (5.1)

and vanish in Q+ x (-o, 0):
<>(,, t) = 0 in Q+ for t < O. (5.2)

Suppose that, for some real positive w, 4b can be written in the form

<>('1 t) = $pr(.1 t) + y(.)e~iwi in Q+ for each t e R, (5.3)

wherein p0 e C'(Q+) and Vr E C'(Q+ x R), with the latter fulfilling the following conditions of transience
and boundedness:

lim r(y, s) = 0 whenever y E Q+ (5.4)1
S -00

and, for certain positive numbers 6, and M,

lim $,4(y, s) = 0 and lim grad VT (y, s) = 0 if y E Q+ and 0 < d+(y) < 6,, (5.4)2
3-4co 3-400

and

$T (y, s)I < M, j4)74(y, s)j < M, and [grad T (y, s)I < M

foryEQ+ withO<d+(y) oc<6 ands>0. (5.5)

Then W has real and imaginary parts that are real-analytic in Q+ and satisfies both (1.23) and (1.34), wherein
the complex Kc+ = c+(w; c, y) is computed as in (1.19) and (1.20).

We remark that (5.3) obviously implies that the hypothesized VT must have more regularity than is indicated
by its inclusion in C'(Q+ x R). Theorem 5.1 is easy to prove because the hypotheses have been adjusted to
make it so; our only interest here lies in showing that (1.34) must hold when a solution of (1.10) evolves in a
"reasonable" manner from a quiescent state to approach a time-harmonic form with the complex amplitude
W. A far more difficult question concerns the formulation of conditions on the shape of r+ and the forcing
terms in the problem under which this approach to a time-harmonic state is assured. Similar remarks are
pertinent to the next theorem.

It is very convenient to couch the statement and proof of Theorem 5.2 in terms of Hilbert-space-valued
functions on R; for the basic definitions and results concerning such maps, one can consult, e.g., Refs. 18
and 19. With a separable Hilbert space H, we associate the collection C(R; H) of all functions on R into
H that are strongly continuous, i.e., that are continuous when H is equipped with the topology induced
by its inner-product structure. For a positive integer m, by Cm (R; H) we denote the family of all elements
U E C(R; H) possessing m strong derivatives u() = U .. .. U(m) that are also in C(R; H), "strong" here
signifying that the derivatives are defined with respect to the inner-product structure of H. For integration
of such functions over subsets of R, we use the Bochner theory (cf. Refs. 18 and 9), although the strong
Riemann integral (cf. Ref. 19) will suffice, in view of the continuity hypotheses that we pose in the upcoming
assertions (in the interest of simplicity). If we were to weaken these hypotheses to allow for the existence of
derivatives in a generalized sense, then use of the Bochner theory would be essential.
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Theorem 5.2. With setting and notation as set forth in §1 and §2, let the functions F0 : R -* HI,
To: R -* L2(r.), and *+ : R -* H1(r+) vanish in (-oo,0). Let F. belong to C(R;HO) and T,, be
contained in C(R; L2(r,,)). Suppose further that, for some w > 0,

F,(t) = F'(t) + foei"t

To(t) = TT (t) + toe-i(t J
for each t G R,

wherein f. E H0 and to E L2 (F0 ), while

lim IIF'(t)hlno = lim hlT' (t) - T+(t) * n+n+11L2(r+) = lim. IIT'(t)11L 2(r-) = 0. (5.7)

Let U: R -* H2 vanish in (-oo, 0), belong to C2(R; HO) when regarded as taking values in H0 , and satisfy

QoU"(t) - A-,AU(t) = F0(t)

T'+[U(t)] = T+(t) + T+I(t)n+

Tn- [U(t)] = T_ (t)

U(t) = U-(t) + ueiwt

for each t E R,

for each t E R.

t C R,

(5.8)

(5.9)

(5.10)

for some u E Ho and UT E C2 (R; HO), the latter satisfying the conditions of transience

Then, for eve

and

lim JIUT(i)(t)hIHo = 0 for j = 0,1, and 2.

'ry u,, E Ca P/

| toi - Ir. dAr. +ij f0.Ui2 dA3 = 0,

j u uu.1, dA3 = 2W /- {| T F(s) Ir. dA + | F'(s) * i, dA3}Aetwds.

The proof of Theorem 5.1 can be carried out in a straightforward manner with the use of an extension
of the classical Kirchhoff representation for certain solutions of the usual wave equation ((5.1) with y = 0;
cf., e.g., Ref. 20) to cover the more general case of the damped-wave equation (5.1). This extension can be
established with the aid of a causal fundamental solution for the hyperbolic operator in question (cf., e.g.,
Ref. 21). Alternately, one can proceed as in the proof of the representation result that we provide in the form
of Lemma A.1 of the Appendix; it is convenient to introduce here some additional notation in preparation
for the use of that Lemma. When x E R3 , let the corresponding distance-function rX on R3 be defined by

rx(y) := ly - xj for y e R .

Suppose that V is a complex function defined on a cylinder F x R, for some F C R3 . With T, c > 0, and
any chosen x E R 3 and t C R, we associate a function defined on F, denoted by [](Xt) F -+ C and termed
the (c-)retardation of TI with respect to (x,t), according to the rule

1(.,t)(Y) := 'IQ - -rx(Y)) for each y G F.
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Recall our convention of §1: for an appropriate complex function * defined in Q+ x R, by *,'+ we mean the
function on F+ x R obtained by taking the spatial normal derivative at fixed values of the fourth argument.

That is, ,+ ( ,t) := iT(. t),,+ on r+ for t E R.

Proof of Theorem 5.1: We shall first assume that R3 \Q+ is of type ', It e C2(Q+ x R), <vr e C'(Q+ x R),
'p E C'(?i+), (5.4)1 holds for every y E Q+, and (5.4)2 and (5.5) are valid for y C F+ instead of for the
points y specified there. Notice that then (5.3), as well as the corresponding equalities between the extended
first partial derivatives, must hold in all of Q+ for each t e R. Under these conditions, we shall show that

'p must be given in Q+ by

= r,+ 1{ (eir ) _1+ ),+ dAr+, for x e Q+. (5.14)

Then, returning to the original hypotheses, and setting, for e > 0,

(Q+) := {y E Q+ I d+(y) > c},

we shall have shown that (5.14) holds with Q+ replaced by (Q+), (and, of course, r+ replaced by O(Q+),), for
any sufficiently small positive e. From this, clearly it shall follow that ,o has real-analytic real and imaginary
parts in all of Q+, that (1.23) holds, and that therefore (1.34) is true, the latter obtaining because Im K+ > 0
(as pointed out in §1). Thus, it suffices to prove (5.14) under the modified hypotheses listed; in particular,
it is to be understood for the remainder of the proof that (5.4) and (5.5) are taken to hold for each y e r+.

With this agreement in force, we have the representation for '$ available by appropriately specializing
in the statement of Lemma A.1. Specifically, taking 7o = 0 and 1 = -y there, we get

4;'(X t) = - { (eY e ) [ rn+](Xt) - ((yr/2c 'I ),+ 4C ([]2)

+1 e - zry/2C rx+'\6t

c r ), ~ +o1]xt

+y jt-/ er -y(t--)/2 {g ((t -_ )2- r2) In+(, r)

+ I (r2),n+g' ((t-r)2- 2 r2) 4(., r)} dr} dAr+

for x E Q+ and t E R. (5.15)

Here, with Iv denoting the modified Bessel function of the first kind and order v, the function g-Y : R\{O} C

is defined to vanish for negative values of its argument and to be given by

9 ( I) 1(ys /2) for s > 0; (5.16)
S2

then gyI(0, oo) C Coo ([O,oo)). In particular, go = 0, so that the terms in (5.15) that contain g-( vanish for

the ordinary wave equation, and this gives the classical Kirchhoff representation.

Now, let x be a point chosen in Q+; since 'p(x) = limt-, 0 eiwtp (x, t), we examine the product eiwt'lI(x, t)

for t C R. Employing (5.15) and observing that, by (5.3) and the additional regularity assumptions noted,
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[~Dl(.t)(Y) = [b'r]( ,t)(y) + 'p(y)eiwteiwr.(y)/c, ['1 ,4](xt)(Y) = [sv4](x.t)(Y) - iW(P(y)eiWteiwr. (Y)/c, and

[ +(,) Y) [v) n+I(xt)(y) + 'p, n(y)e-iwteiwr.(Y)/c hold for y C F7, we find

iwtp~, t ewt -yr.2c ( +e--Yr./2c\) 47r r+ {( [rxn+](,,t)- ) r n+ + '9 (e-yrx/2c),n+) [pI4](Xt)

+1 ( ) rx~n+ [V)4]x)

+2 10 e 7(t-r)/2 (t r)2
- 1 2r) T (-)

+ 1 (rX),n+g1 ((t - r)2 - - r2) <r r)} dr} dAr

1 {( e~r"/~ - (( e~tro/e) - 'p

e c(t-r) {g2 ((- tr)2
- _ r) 2 _ 1+

+C2 (r ),n+g/ ((t-r) 2 - 2 r ) s} dr} dAr+

for t C R. (5.17)

having set

a a(w Y) := 2. - iw. (5.18)

In the second integral over r+on the right in (5.17), a simplification has resulted from the combination

(e--yr/2c iwr./c i (e tei-arc/e c

r 2 n+e~' + ce r ) rxn+ = r ))n+' on r+.

We write (5.17) in the form

eiwt4¢(xt) = - eiw (xt t)- 12(X t),

I,(x, t) denoting the first integral over r+ appearing on the right, 12(X, t) denoting the second. We intend
to show that

lim 2E,(Xt) = 0 (5.19)

and

lirm 2 (X, t) = j {(e) -S ( ), ) }} (5.20)

whence (5.14) shall follow, and the proof will be effectively complete, as outlined. The equalities (5.19) and
(5.20) are established by considering in turn the various terms appearing in YI(x, t) and T2 (x, t), identifying
for each integrand its pointwise limit as t - oo and an estimate valid for all sufficiently large t, in such a
way that the Dominated-Convergence Theorem of Lebesgue will be applicable to give the limiting value of
that term. Introducing the number

d+(x) := max Y- xl,
yEr'+

henceforth, unless otherwise specified, we suppose (at least) that t > d+(x)/c, so that t - rx(y)/c is positive
for all y E r,.
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With this plan in mind, we examine first the integral

:= Se-tr +c

IICr i xt r. )c ](x,t)d~+
Since [ ),Tn+](1t)(y) = s;"n+ (y' t - rx(y)/c) for every y E r+, it is clear from (the modified form of) (5.4)2
that the integrand here converges pointwise on r+ to zero as t -* oo. Moreover, it is just as clear that the
integrand is majorized in modulus by

d (x) ~mrx |V + (Y t - !r(Y)) I < d (x)

for all t > d+(x)/c, the inequality here following from (the modified form of) (5.5). Consequently, the
Dominated-Convergence Theorem allows the assertion that limt-....0 I (x, t) = 0. The integrals correspond-
ing to the second and third terms in the integrand of Ii (x, t) can be shown also to have limit zero, in a
similar manner, by using the other (modified) hypotheses in (5.4) and (5.5). Now (5.19) has been verified if
y = 0, so we assume in the further reasoning concerning Ii(x, t) that Rey > 0.

Next, let

114(x, t):= 7; e1(tT)2g7 ((I-r) - -r.r) $n+(.r)drdAr+,

which can be written

elr-,/2 11 (Y7(_-_r2 /c) /2)T
114 (I) = 4 ; n+/@2 - rQ/c2)i - 7r)ho 7 r- rX) ho(t - 7)drdAr+, (5.21)

wherein ho denotes the Heaviside function:

°o(s) {= 1 if s < O,

Once again, with (5.4)2 it is evident that the integrand in (5.21) converges to zero as t -* oo, pointwise on
F+ x (0, oo). To derive an acceptable uniform estimate for the modulus of that integrand, we need some
information about the behavior of I, when its argument lies in the right half-plane and has large modulus. A
standard asymptotic result for Iv(z) when the principal argument arg z is restricted by I argzj < (ir/2) -6,
with 6 fixed in (0,vr/2) (cf., e.g., Eq. (5.11.10) of Ref. 22), coupled with the fact that now Rey > 0, shows
that there exist positive numbers M(Qy) and s,(7) such that

|IQySs2/2)1 < - 1 + M, (z } for s > sv(Y). (5.22)
2 4 ~~2

Thus, for y E F+, r > (d+(x)/c)2 +si1y) 2 , and any t, the modulus of the integrand in (5.21) at (y, r; t)
is bounded by

eRey/2 e(r2rx(y)/c)2)2 Re y/2 M
(wIYI)i(72 - (r (y)/C)2)4 'I y -+(Y r)ho(-r)I < (wII)(7 - (d+(X)/C)2)i-

Meanwhile, in the remaining (bounded) portion r+ x (0, (d+(x)/c) 2 + s (-y)2] of F+ x (0, oo), and for,
say, t > 0, it is easy to see that the integrand in (5.21) is uniformly bounded in modulus, in view of
the boundedness of g, on bounded subsets of (0, co) and of -Vn+ on r+ x (O, oo). Consequently, there is a
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nonnegative element of L1 (r+ x (0, no)) dominating the modulus of the integrand in (5.21) for all sufficiently
large t, whence limt-,,j 114 (x, t) = O.

Denoting by 1 15 (x, t) the final term of 11(x, t), an integration by parts produces

2T15(x t) : = |a ' r2),n+e8y(t-T)/2g/ ((t r) 2
- 1 rX) b, r) d +dAr+

= 4+3 {-2c(e-tr~J2c)rx~n+[bT](xt)gy(0+) (x1+ et/ (.,0 1)ge (t2_2rX)

(e (t )2 ) 3 ((tr-r)2x - -rd ) dr} dAr, (5.23)

with g7(0+) := lims 0 + gy(s) = y/4. Obviously, the integral corresponding to the first term in the integrand

on the right in (5.23) can be treated by essentially the same reasoning applied to Ili(x, .) and so vanishes

in the limit as t -* oo. For the second term in the integrand, with the aid of (5.22) we derive the estimates

(x+ Y)t r\ 2( -rx(y)"g I

e-tRe/2 eRey(t2-(r,(y)/c) ) 2/2 My( ) 2

-d+(x~e -(7r l(t-(r(Y)/c)2)4 t (t2 - (r(y)/c) 2 ) J d, 52

- 4d+(X) max lIr(z -)l

(7rI|1)2't (t2 - (d+ (x)/c) 2 ) zEr+

for all y C r+ and all sufficiently large t > d+(x)/c, (5.24)

showing at once that the corresponding integral of this term over + ha s li mit zero as t i o. The same

assertion can be proven for the final (iterated-integral) term on the right in (5.23) by proceeding along the

lines of the analysis carried out for T1 4 (x, .); only straightforward modifications are required, so we omit the

details. The limit equality in (5.19) can now be regarded as established.

Turning to 12 (X, .), it is first of all obvious that (5.20) is true if -y = 0, since go = 0 and -c~(w, 0)/c =

iw/c = ic+(w; c, 0). Thus, we suppose in the remainder of the proof that Re -y> 0. At the outset, we perform
integrations by parts in the inner integral appearing in T2 (x, t), once for the term involving g,, and twice for

the term containing gt * In the former, we base the computation on the observation

Yjgy((t-r)2-rX(y)/c2) = _Gz(r~y,t) for 0 < r <- trx(y)/c, with y C r+~ and t > d+(x)/c, (5.25)

wherein, for such T, y, and t,

G(r;y,t) := It (- ((t-r)2- I2 r(y)) 2);

in the term involving gf, a first integration by parts results in the appearance of ge, whereupon (5.25) is

used once again, to effect a second integration by parts. With KV denoting Macdonald's function of order v

(cf. Ref. 22), sometimes also called the modified Bessel function of the third kind and order v (cf. Ref.523),
we use the equality

K2(z) = (2 ) et Z for z < 7 0 and >argzd < xr, (5.26)
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to replace the appearance of the exponential function in favor of K 1 , subsequently applying the well-known
formula asserting that the derivative of the function z ~-* z- 1 K1,(z) is simply the function z i-z-* K,+(z).
In this manner, we find

2c, Jt-Sr~(Y) e ( )g9y ((t -r) - .r'(y)) dr

e--ra(y)/c + et Io (7 (t2 .. ir2(y))21 )

~rx(y~) + 2 C2

+ 2 1 K1 (cx(t- 7)) (I ((tr)2 1 ))

\Ur,.J CO ~~~(t - 7)2 2i
and

2c3 10 e_(t_)g ((t -) -72 r(Y)) dr

= _2 e + z( e/9 (t2_ - ir2(y))
__ r + 43 e 2 (y))

2Ca { (arx(y))3 (rx(y)) 2

+2C3 { (t) 3 + (t) 2 }etIo (i (t2 -

+ (7) 2c~ je~ ) J((t-r)2 (2 ( - ) d

each holding for all y C r+ and t > d+(x)/c. Inserting these results into the expression for 12(x, I) and
performing some rearrangements and simplifications (under which all terms involving the exponential e~rXIc

disappear), we come to

+1 ( eet t(l(t2 - r_/c2)/2)

+2 2 + trY) K (a (2 (tr - 2r) ))) (rXn+°}

+ (2)) c2 J i((t-r)) 1o (2 (-r) 2 - c2t _ ) 1n+ d1rdAr+

(2)2 o( J J c /2 /

+ (~)~~4+Ii~(I - t - -)2 )2- ir)(rjn'ddr
for t > d+(x)/c. (5.27)

There is no difficulty in showing that the first integral on the right in (5.27) approaches zero as t oon
since we have available for each of the terms in the integrand an estimate of the sort appearing in (5.24)
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(used to analyze the second term in the integral over r+ on the right in (5.23)). One should note here that
Re a = Re(y/2), while both WIr+ and An+ are now in C(P+), and so are bounded.

Finally, we must deal with the second and third integrals taken over 17+ on the right in (5.27). To
evaluate the pointwise limits of the integrands, i.e., of the inner integrals, we first write

10)12 a 2 jl-r,(Y Ka +) 2~y/2 ~ k T

122 (Y,t; )X (r)2 c (a-r Io (2 ((t - )2 r2 (Y)) d7

and

123(Y t;x) := (2~) a2 ~(r2),r+(y) j I2(( r)S (2 ((t-) 1 2(y) ) dT

7r c 0 (t -~( 7 r)21 C2 -

1 2 2 2. t-r(y)/C2 Ka (7k (2 + r2(y)/C2) 21 ) ,z= 3. 2jr) 2 a (y) jt X( + ' (5.29)

= c ) 2 2(rX~n+(Y),, (y2+ r(y)/c2) 20(2)

for y C Pn and d> d+(x)/c.

Now, for the evaluation of the limits as t -* no of the integrals on the right in (5.28) and (5.29), we have
prepared Lemma A.2 of the Appendix. In the statement of that Lemma, we wish to take a = rx(y)/c (with
y chosen in F+), / = i/2 = -(Im/2) +i(Re y/2), and z = a =(Re y/2) + i((Im7/2) -w); in particular
we shall then have

Jo(/r) = Jo (ir) =I (t2) for r-> 0
(with Jo denoting, of course, the Bessel function of the first kind and order zero) and Re z = Im/3 =
Re./2 > 0, and consequently must use equality (A.19) for the evaluation of the limits in question. With
these identifications,

£2 + p2 = -w(W + i.7) = Iw(w + i)Iei( ) + 0,

in which we have denoted the principal argument of w(w + i~y) by W9. since Rey >0O (and w >0O), W9 lies in
(0, ir), whence i9 - r lies in (-ir, 0), and we compute, recalling (1.19),

z+ 2 = A-W(w + i.7) = lw(w + i.)lei9/2e-i~r/2 = _i ww = -icie+.

Provided that Red > 1, (A.19) then gives

°o~ K(2 + rX(y)/c2 ) 2) D __ _ _41

= (~-zcKe+, 1 (-iK:+rx(y)) . (5.30)

By first taking h = 3/2 in (5.30) and recalling (5.26), it is easy to check that

Jlimo 22(yt;x) = e7r I(y) for each y C ; (5.31)

cc rx~~~2 
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by setting ( = 5/2 in (5.30) and using (5.26) with the recursion relation for Ke to compute

Ka (z) = 1 + 1) K,(z)= (27) ( -1 + 1e

one also finds

lim 123(Y,t;X) = rX(y)rxn ( (y) 2
t-C= (- ) r+ (y) I

= - (e ir+r,~ ) .,n(y) foi

{ (-itc+rx(y)) 2 (-i 1+r.(y)) i 2

reach y E r+.

Now, to prove that the pointwise limits in (5.31) and (5.32) imply (5.20), we have only to produce appropriate
estimates for the integrands of the second and third integrals taken over F+ in (5.27). To this end, we cite
the bound (l7sl) ( ) esRe a { I }(a) for s > s4(a), (5.33)

wherein Me(a) and s(oz) are certain positive numbers depending upon only the indicated parameters,
following from an asymptotic formula for Ke(z) that is valid when I argzI < r - 6, with 6 fixed in (0, 7r)
(cf. Eq. (5.11.9) of Ref. 22). With this, we find that the integrands in question are uniformly bounded for
y E F+ and all sufficiently large t. For example, consider the second term on the right in (5.27): if y C r+
and t > to > d+(x)/c,

'-lrx(Y) Ka 2C~-) 11 1 pi-nY K' (ae(t --)) 10 ((t _ r)21r2(y)\ d
~On+ (Y) ]0 ( ')1 10- 2 ytC)- - X Y) J d

< max 'pn,+(z)I {J | (r)1(2 (72 (r2)) ) d|rj to K K -~ x Y )) ) d
B gag t h r i t 2 h C 2 x s l

By using (5.33) and recalling (5.22), the second integral on the right here is, for a fixed, sufficiently large t.

dr < _ _4 co 1 dr
- (21a.7I)2 Jto r7(r2-(d+(x)/c)2) 4

and, for that t., the first integral on the right is

< max Io0 ) ]2 dr2-0<s<t. 1 2 1d+ (-) 7 r2

inequalities providing uniform bounds as claimed. The third term on the right in (5.27) can be handled in a
similar manner, whence we conclude by (5.31), (5.32), and the Dominated-Convergence Theorem that (5.20)
is indeed correct. This completes the proof of Theorem 5.1. i

Proof of Theorem 5.2: Fix ue,, E A W; corresponding to this choice, set

U" (t) : = u, e - i() for each t E R,
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to get an element U,, of Ccc(R; H2 ) with the properties A*,,U,(t) + eow 2 U (t) = 0, Tno [U(t)] = 0, and
U,,(t)lr+ n+ = 0 for each t e R; obviously, any one of the derivatives of U, say, U', possesses the same
properties. Consequently, the equality

{TJ(s) . AA, U(s) - U(s) AA Ut(s)} dA3

= 4 {,U(s)pr. Tn,[U(s)] - U(s) Tf°[U/'(s)]} dAr.,

holding for each s e R and resulting from two applications of (2.9), leads to

Qoj {UI"(S) .'I"(S)+ w 2U(S) .U(s)} dA3

= iwe)S {fJ T.(s) u- krdAr. + J Fo(s) ui, dA3 } for each s E R, (5.34)

in view of (5.8) and (5.9). We note here that the function T+ need be considered no further. By using (5.6)
and (5.10), in particular, by computing U"(s) from the latter equality as U"'/(s)-w 2 ue-ws for each s E R,
a first application of (5.34) yields

Qo f {U "(s) + w 2 UT(s)} I U,(s) dA3

=iwe"' {4 T'(s) Ua.iiJdA. +j F'(s) .U,,dA 3}

+iw {J to Ui, Ir dAre + j fo(s) ui!iW dAa} for each s C R.

Directly from the latter equality, (5.12) results by employing the conditions of transience (5.7) and (5.11)
(for j = 0 and 2), the vanishing of u,, Ir+- n+, and the Cauchy-Schwarz inequality.

For the proof of (5.13), we return to (5.34). By noting that

U// .U + W2U . U, = (U' . Q4)' + W2(U U

holds by virtue of the relation U." = -w2 U,, and again using (5.6), but now taking into account (5.12), we
are led this time from (5.34) to

eo J(U' Uw + w 2U U,)' (s) dA3 = ie'ei { T(s) -U. lr0 dAr +j Fo(s) .U dA3}

for each s C R.

Choose any t > 0 and integrate this equality over (0, t); applications of the Cauchy-Schwarz inequality and
accounting for the continuity of the functions s i-* IIU(M)(s)hIHo serve to verify that Fubini's Theorem can
be invoked to justify reversing the order of integration in the resultant left-hand side. By recalling that
U(O) = U'(0) = 0 and using (5.10) to replace the appearance of U and U', we come to

2o0w2 1 u -ii, dA3 + O {UI'(t) . Ul(t) + W2 UT(t) . U,(t)} dA3

iw e L -{ (s) u-,wr0 dA,- +- F'(s) u-,, du 3 ds,
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holding then for each t > 0. Appealing to (5.11), this time for j = 0 and 1, we see that the second term on
the left here has the limit 0 as t -*oo. Thus, the limit of the integral on the right exists, and (5.13) results
upon letting t -* oo. I

Finally, supposing that the hypotheses of Theorem 5.2 remain in force, we remark that it is easy to
identify additional conditions on Ur under which u satisfies (1.24). For example, suppose that UT(t) E H2

for each t E R and limt0.0 IIjUT (t)11H2 = 0. Then u must lie in H2 and (5.8) will give, with the limits being
taken in the norm of H0 ,

lim eit-A* UT(t) + oUrI(t)} - - 2U = lim eiwtFT(t) + fo,

whence (1.24) follows. Similarly, one can formulate reasonable conditions of this sort on the functions U, 4,
To, Fo, V', and on the summands in their forms assumed in §1, under which (1.18), (1.25), and (1.26) are
consequences of (1.7), (1.13), and (1.14), respectively.
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Appendix

AUXILIARY RESULTS

We have collected here the formulations and fairly detailed proofs of two statements that are used in
the proof of Theorem 5.1.

The first result provides an integral representation for sufficiently regular and (for simplicity) initially
quiescent solutions of the so-called damped-wave equation (1.10) or (5.1) in the exterior of a cylinder in
space-time. The representation coincides with that resulting from the use of Green's Theorem in conjunction
with a causal fundamental solution (in the distributional sense) for the hyperbolic operator involved (cf.,
e.g., Ref. A.1), and reduces to the classical Kirchhoff expression (cf., e.g., Ref. A.2) in the case of the ordinary
wave equation. A full and precise statement of the representation does not seem to be readily available, and
so we have chosen to outline here the main points in a derivation; the present proof does not employ the
theory of distributions but is more in the spirit of "elliptic" reasoning, essentially consisting in an extension
of the development of the Kirchhoff result as presented in Ref. A.2. Actually, we shall consider a more general
hyperbolic operator, since but little additional work is thereby required.

It is convenient to introduce some notation, to prepare for the statement and proof of the first Lemma.
When x E R3 , let the corresponding distance-function rX on R3 be defined by

rx(y) := Iy-xj for y C R3 .

Suppose that E is a complex function defined on a cylinder F x R, for some F C R3 . With IF, c > 0, and
any chosen x C R3 and t E R, we associate a function defined on F, denoted by [I](Xe) F -* C and termed
the (c-)retardation of T with respect to (x, t), according to the rule

1
['I(xt) (Y) := ~I' (t - rx(y)) for each y E F.

Recall our convention of §1: for an appropriate complex function W defined in Q+ x R, by An+ we mean the
function on F+ x R obtained by taking the spatial normal derivative at fixed values of the fourth argument.
That is, qf,+( ,t) := we 1t),.+ on F+ for t E R. We shall write Ba(x) := {y E R3 I ly - xl < a} for the
open ball in R3 of radius a > 0 and centered at x C R3 . Finally, we use the standard notation I, for the
modified Bessel function of the first kind and order v; cf. the definition in Eq. (5.7.1) of Ref. A.3.

Lemma A.1. Let the open set Q+ in R3 be connected and the complement of the closure of a bounded
connected Lipschitz domain; write F+ := OQ+, and let n+ denote the unit-normal field that is defined at all
appropriate points of F+ and "directed into Q+." Suppose that c is a real positive number, while .7o and .71

are complex. Let 'I E C2(?i+ x R) satisfy

1 ~-
_A(1 + ( + ' 4 + c ¢,44 = O. in Q+ x R, (A.1)

and vanish in Q+ x (-no, 0):
4)(-, t) = 0 in Q+ for t < O. (A.2)
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Then -I> has the representation given by

if r (71r./2c) e--ylrf/2c\-l.2
4)(xt) = -47r I { ( ,r ) [n+](xxt) -( ( ) -+ C2 (e )rx,n+) [>](xt)

+ (e 9r/) rXlN+[N4](x t)

' e't-r -1(t-7)' {)/ ((t-r) 2
- 2rX) ) r)

+ 1(r2),.n+f ((t _ r)2- -r2) 4(, ,r)} dr} dAr+,

for x C Q+ and t E R, (A.3)

wherein
- - 4 -yo, (A.4)

and V/' denotes a selected square root off, corresponding to which the function fc : R\ {0} -+ C is defined
by

fe(() { i(V zx/2)/a if X < O (A.5)
(so that fo is the zero-function).

Proof: A preliminary transformation serves to simplify the form of the underlying partial differential equation:
specifically, setting

T(y, s) := 4I(y, s)e01 /2 for y C Q+ and s C R, (A.6)

we get a function I E C2 (Q+ x R), vanishing in Q+ x (-no, 0) and satisfying, with ( defined as in (A.4),

-A 4X 2 - w + I2 @ = 0, in Q+ x R, (A.7)

as one can readily check. In the remainder of the proof, let x be fixed in Q+; until further notice, let t be fixed
and positive. Then ['](xt) and 1%PA](. t) are defined in Q+ and lie in C(Qi+), while the supports of

and [1F'4](x t) are compact in Qi+, in fact, are contained in the closure of the set Q+ nfBct(x), since [']'(Xt)(y)
and [@'4](x t)(Y) vanish when t - (1/c)rx(y) < 0. Further, from the chain-rule computations yielding

[f( =ti](X t)(Y)-c _rx~ (Y)[k4](xt)(Y) for Y C Q+ \ {x}, j = 1, 2, 3,

and the further expressions giving [T](X t),jk and ['1 4](x t),i in Q+ \ {x} for j, k = 1, 2, 3, it is apparent that

['Pi(x t) and [R,4](xt) may fail to have partial derivatives at x, but their restrictions to Q+ \ {x} do lie in
C2 (Q+ \ {x}) and C' (Q+ \ {x}), respectively, with their first partial derivatives remaining bounded in that
set. A bit of computation, along with an appeal to the obvious fact that the retardation with respect to
(x,t) of the function appearing on the left in (A.7) vanishes throughout Q+, will verify that the Laplacian
of [I](Xi) satisfies (cf. Ref. A.2, for the case = 0)

rw(t) jj = .{r rxj [', 4] (Xt) }j - (+-2) r[I](Xt) in Q+ \ {x}. (A.8)

For the moment, let f denote a complex function defined in R \ {0}, with f(s) = 0 for s < 0 and
the restriction fl(0,no) C C2 ([0,no)); we shall presently choose f judiciously. With f, x, t, and any I C
C(Q+ x R), we associate the function {f * }(x t): Q+ C according to

{f *T}(xt)(y) := j f ((t-r)2- r(y)) (y, ) dT for y C Q+.
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The argument of f appearing here is

(t-r) 2 - 2 .rX(Y) = {Q - rx(y)) -r} { (t + rx(Y)) r},

which is positive when 0 < r <t - rx(y)/c and negative when t - rx(y)/c < r < 0. In particular, {f * I}(x,t)
vanishes outside the set o+ n Bt(x), since f(s) = 0 for s < 0; actually, the values of f for negative values of

its argument will be irrelevant for us, since we shall be interested exclusively in the cases when 'P is either T

or 'Tj, each of which vanishes in Q+ x (-oo, 0). The regularity properties of {f * i}(.,t) can be discerned a

bit more easily by making a change of variable: setting, for definiteness, f(0) := f(0+) := lima . 0+ f(s), we

can write

{f * '}(Xt)(Y)

= (t - r_(Y)) f ((t - !rx(Y)) (1 - s) ((t + !rX(y)) -(t--rx(y)) s)) vi (y, (t- rx(y)) s) ds

whenever y E Q+ (by first supposing that t - rx(y)/c $ 0, and then noting that the result is true also when

t - rx(y)/c = 0). From the latter form, it is a simple matter to check that {f * }(xct) is in C(Q+), and,
moreover, that the functions {f *T} (xit) and {f *(,Fj)}(xt) of particular interest are at least in C2 (±+ \ {x})
and C' (Q+ \ {x}), respectively, with their first partial derivatives bounded in Q+ \ {x}. The only difficulty

at all lies in examining the behavior of these functions near x and F+ and on the set Q+ n fBct(x). Consider,

for example, {f*'I'}(x,t): from the second form, it is easily seen that the first partial derivatives of {f*'P}(x,t)

exist and equal zero at any y E Q+ with t - rx(y)/c = 0, owing to the regularity hypothesized for f and

IF and the vanishing of ' in Q+ x (-o, 0). At a point y E Q+, y $ x, and contained in the ball B~t(x),

the usual formula for differentiation of a parameter-dependent integral can be applied to compute the first

partial derivatives of {f * fl}(Xt). Upon doing so, an inspection shows that the resultant expression vanishes

outside Bct(x), and so is valid in all of Q+ \ {x}; that is, we have

{f * }(xt),j(Y) - f(0+)rx,j (Y)[1] (xt)(Y)c

+f C (Y) {f ((t - r)2j- 1 r2(y)) 2P,,(y r)

-C2 (rxwiYX _C-r 2- 2r,(y)) I~~) r

for y G Q+ \ {x}. (A.9)

Directly from (A.9), it is obvious that the first partial derivatives of {f*T}(X,t) can be extended continuously

to all points of F+ and are bounded in Q+ \ {x}. The second partial derivatives of {f **}(xt) can be shown

to be in C(Q+ \ {x}) (but not necessarily bounded there) in a similar manner, starting from (A.9). The

study of the first derivatives of {f * (jP,,)}(X,t) is entirely analogous.

Now, by using (A.7) and the vanishing of ' in Q+ x (-oo, 0), an elementary, albeit rather tedious,

computation reveals that the Laplacian of {f * '}(xt) in Q+ \ {x} satisfies
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{f * }(,t),jj(y) - 2{f * (1kj)}(xt),j(y)

2 

=-c f(0+) 1 (yF1(xt)(Y)

42 jt-,rx(Y { ((t - r)2- 2 r2(Y)) f" ((t- r)2 ()

+2f' ((t - r)2- 4 r2(Y))- f ((t - r)2- r(y)) } P(y, r) dr,

for y C Q+ \ {x}. (A.l0)

Evidently, we should select fl(0, oo) in such a way that this restriction lies in C2 ([o, oo)) and the bracketed
factor in the integrand on the right in (A.10) vanishes for 0 < r < t - rx(y)/c, for each y E Q+ n Bct(x);
since (t - r)2 - r2(y)/c2 is positive for all such r and y, we demand that

sf"(s) + 2f'(s) - f(s) = 0 for all s > 0.

It follows that we must take f 1(0, no) to be given by a multiple of fC, wherein

fA(s) I, (V''12/2) for s > 0, (A.11)
S2

with N/4' indicating a fixed choice of square root of ( (in which case we shall even have fl(0,oo) C
C° ([O, oo))). For a reason that will become apparent shortly, we choose the multiple so that f(O+) = (/8c;
since we find fe(O+) = \/T'/4 from (A.11), this requires that we take

f(s) := F2 fe(s) for s > 0.

Now, with f so specified, (A.10) gives

If * (.,t), jj = 2{f *(,j)}(x ),j- (4C2) r ['](Xt), in Q+ \ {x};

combining this with (A.8), we come to

-[P](x t),jj - {f * }(xt), jj =-C { rx-* [4](xt) j 2{f * (TPj)}(xt),j, in Q+ \ {x}. (A. 12)

Now let the positive number R be greater than ct and so large that the ball BR(X) contains R 3 \Q+; for
all sufficiently small positive e, denote by Q+R` the bounded open set {Q+ n BR(x)} \ B,(x), with boundary

QR+,c = 1r+ U OBR(X) U OB,(x). For any such e, according to the preparation laid down in the discussions of
the regularity properties of [R](x t), [1,4](Xt), {f*I}(x,t), and {f*(jj)}(xt), we can apply Green's Theorem
to each of the terms in the integral of the left-hand side of (A.12) over QR', (recognizing that the Laplacians of
both the function 1/r. and the function having everywhere the value 1 vanish in £+'e), while simultaneously
using the Divergence Theorem to transform each of the terms in the integral of the right-hand side over the
same open set. By proceeding in this manner and using the support properties of the integrands along with
the condition t - R/c < 0 to conclude that all resultant integrals taken over the portion OBR(x) of O3Q+
must vanish, we get (with n+j, i = 1, 2, 3, denoting the Cartesian components of n+)
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4Ir {(r ) [W](x,t))n+ ),n+,Px It -{f *'}(xt)an+} dAr+

L| () r-,j{() ['P](Xtt)j -( )3i[T](X,) - {f*T}(xt)i} d~aB,(x)

-L, { (;:x) [P](X't),jj - {f * }(Xt) jj} dA3

-| {-- (-Lrxxj[%4](Xt))-2{f *('Pe))}(Xt)} dAa

=2j { (1) rXn+ [, 4](Xt) + {f * (Tj)}(xt)n+j }dAr+

2aB,(x) {(crx) ['P,](xxt3+{f*('Pj)}(x~)rxj} dB )

so, noting that

= [P](x~t),n++ -rx, n4+'4](xt)1r+, on r+,
we have

| {(r ) ~[,](x't),jrxrj + (r)[V](x,t)- If * 14}(x,t)jrxvj
JOB,(x) rI(x r2IXXrxJ+(i) i]~ 

+ (c 2) [T,4](xt) + 2{f*((,&j)}(xt)rxji} dAaBe(x)

Ir4+ { (rx) [r~n+] )- (& ) ,nI+[](x t) + (-) rXn+['F,4]((Xt)

+ 2{f * (j)}(xt)n+j- {f * }(x't), n+} dAr+ (A.13)

The expression on the left in (A.13) is consequently independent of the sufficiently small positive e; its limit

for e -O 0+ is easily proven to be 47rT(x, t), by noting that the first partial derivatives of rx, [T](x t), and

{f * 'P}(x,t) are bounded in Q+ \ {X}, appealing to the continuity of lI'P](x t)' lP,41(x,,t) and {f * (Vj)}(xt) in

Q+, and observing that [T](xt)(x) = T(x, t). Thus, by inserting the definition of {f* (4,j)}(x,t) and using

(A.9), from (A.13) we derive the equality

'1~(x, t) = -7 I4+ { (h) [qn+](Xt) - ((hX) n+ - x +) [R](X,t)

+ ( I-) rxn+[T, 4](x~t)

+Ž j { ((t-r)2- 2rX) 'P+( r)

+ I(r2),n+f' ((t _ r)2- ir2) (-, r)} dr} dAr+ (A. 14)

Upon using (A.6) to replace each appearance of ' in (A.14) by the appropriate expression involving <D, it is

a simple matter to verify that (A.3) results after some rearrangement. Finally, we have assumed here that
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t > 0, but it is obvious that (A.3) holds for t < 0 as well, since the expression on the right in that equality
vanishes for any such t. I

Next, we turn to the explicit evaluation of an integral of Sonine-Gegenbauer type, for which it is first
necessary to interject some remarks about complex algebra. With Log (.) denoting the principal branch of
the logarithm-function, given as usual by

Log( := In I(I + i arg for 0,

wherein In x is the natural logarithm of the positive number x and arg C (-7r, 7r] indicates the principal
argument of the complex number 5 $ 0, throughout ( h- signifies the principal branch of the general
power function:

C a := exp(ozLog()= exp(c I(nIj + io argC) for C E C, ( : 0, and ce E C.

When c = 1/2, we may write A/¢ in place of (a. Then we have the following rules of calculation:

(° = (&1+&2 and ° =

but, if ce 0,

(4 = C 42a and (C'/C2 )a = cf /C iff -r < arg C + arg( 2 < 7;

moreover, in general we have only
(C c ),3 C ce, e27rin(( ,o ),

in which n((, a) denotes the unique integer such that

arg (eilm (aLog()) = Im (aLog C) + 2n((Cce)7r.

Consequently, if /B $ 0, then

((O)f = ( 13 iff - 7r < Imaln I(I + Reaarg < 7r.

For example, the equality (C)l' - C', holds if both C and a are real or if only a is real and -1 < a < 1.
Later, we shall employ these facts without explicit mention.

Now, with KI denoting Macdonald's function of order (, J, the Bessel function of the first kind and
order v, and z, a, and / complex numbers, let us formally set

I(zjal;$, v :=. / K(z 2 J)J (1)Xv+± dx. (A.15)

The standard works provide an explicit evaluation of I(z I a, 1; (, v) for z and 3 real and positive, a complex
with its principal argument arg a restricted by I arg al < 7r/2, and ( and v complex, with Re v > -1; under
these conditions,

I(z I a,,3; , v) = d (-) 1 ( z 2 + 13 2), (A.16)

as shown, e.g., by Watson [A.4, p. 416, Eq. 13.47(2)]. However, our interest necessarily lies in evaluating
I(z I a, ,3; (, v) for certain nonreal values of z and 13, although only for a real and positive. Watson (loc. cit.)
notes merely that (A.16) is valid for complex z and 13 "with certain limitations," while Erdelyi et al. [A.5,
p. 94, Eq. 7.14.2(46)] provide the formula with no indication of the restrictions on z and 3. Evidently, the
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evaluation has not been carried out for values of the parameters pertinent to our setting, and so we extend
the reasoning of Refs. A.3 or A.4 to develop the required result in

Lemma A.2. Let ( and v be complex, with Re v > -1. Let a be real and nonzero, and suppose that 13 is a
nonzero complex number with arg1t 5$ ir. Introduce the half-plane C+ C C by

C, : E C I Rez > 11m31}.

(i) The integral appearing on the right in (A.15) exists for each z e C+; the resultant function I(. Ia, 13; , v)
is analytic in C+ and is given by

21(z I af1; d , v) = (.- (\ha /) K-.- .(lal)z2 +12) for Rez > 1Impl1.

(ii) Suppose it also true that Re(( - v - 1) > 0. Then the integral on the right in (A.15) exists for each
nonzero z lying on the boundary of C+, i.e., for z $ 0 and Rez = hImflh (which is all of the boundary
of C+ unless Im 13 = 0); moreover, in this case, the resultant values provide a continuous extension of
the function I( - I a, A; C, v) to such boundary points, so that

fcc ~~~~J,,(13x)x'~+i dx = limKek,- ( aah,, +#2

Jo M + a ~~~~~~CEC la]

for Rez = 1Imfl and z $ 0. (A.18)

Explicitly, (A. 18) appears as

X f Ke(ZV + ) J,(13x)x"+' dx =(X x2 a2) f

I

Ke-,-jlalaz 2 -+12) ifz 2 +)32 :0 

z3v2C-v-2 r(~ - v - 1)
z~a2C-2v-2 r(V1

for Im$ B 0 and Rez = hIm313,

d ( 2 + a2 ) JV (3x)xP+l dx =

/v ( 132-1

(ib)e Jah 9
1v

(ib)C

( i k 2 1 ) JaiA -

Ke-.-.' lala13l2 - b2) if hbh < 1
-1

1Ke-v-1(±iIahI b- 132)

if lbl > 1 and b>0

if b = id24- v-2 17__ - V - 1)
,(±i)Cpt-^a2C _2v-2(-V1

for 1 real and positive, and z = ib with b real and nonzero. (A.20)
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Before giving the proof, we remark that we need only the result given in (A.19), for Im13 $ 0, in the
proof of Theorem 5.1. The form of (A.18) for the case in which 3 is real and positive and z = ib, with b
real and nonzero, appearing here as (A.20), has been presented only for the sake of completeness. If desired,
(A.20) can be recast into a form involving the Hankel functions of the first and second kinds rather than the
Macdonald functions, by using the familiar relations between these functions given in Ref. A.3, Eqs. (5.7.5)
and (5.7.6); in this manner, one can derive, e.g., the formula to be found in Ref. A.5, p. 94, Eq. 7.14.2(48).

Proof: We begin by studying the z-dependence of the convergence properties of the integral appearing in
(A.15), with the remaining parameters fixed and restricted as in the hypotheses. Throughout, it is to be
understood that x takes only real values, while C1, C2 , etc., indicate positive numbers that may change
from estimate to estimate, and may depend upon the secondary parameters in a given setting, but shall be
constant with respect to the primary variable(s); we may indicate the explicit dependence of one or more of
these numbers upon certain of the secondary parameters.

First, the restriction Rev > -1 ensures that the integrand in (A.15) is sufficiently well-behaved in the
neighborhood of the lower limit. For, given any positive M, from the expansion of J,(() in ascending powers
of ( we have an inequality

IJ ((I) ' C(M)I(IRev for 0 < ICl < 131M and I arg~l < Xr,

so that, if also 0 < 61 < 62, there exists a c 2 (M,61,6 2 ) such that

KI (z a JaV(/3X) X +i <• C2 (M, i,6 2)X
2Reev+1

(/X- 2
a

2 )1

for 0 < z < M, O < 1 < I ZI < 62, and I argzI < yr, (A.21)

since it is easy to check that K1 is bounded in any slit annulus { z CC I 0 < 63 < I Z I < 64, Iarg< K'r }.

Turning to the examination of the integrand in (A.15) for large values of x, we recall the asymptotic
formulas

formlsK() = e {1 +O( )} as IIl no with I argI < X -°6o (A.22)

(Ref.A.3, Eq. (5.11.9)) and

Jv(C) = 4{cos (C- ( + )) + elIm (Q ( 1 )} as CI ono with I arg(I < yr-'5 (A.23)

(following from Ref. A.3, Eq. (5.11.6)), wherein bo is fixed in (0, yr), from which it is clear that, given any
positive 61, there can be found corresponding positive numbers c1, C2, and M'(6 1) such that

e-(Re z)/X 2+a2

IKE(z <2 + a2)l • c1 (2 + 2)' for x > M'(6 1) and 0 < 61 < lzI with I arg zI < r-6o (A.24)

and
eIIm Ph'l

IJv(Xz)l < c2 I for x > M'(6 1), (A.25)
X2

the latter inequality following since cos ( and sin ( are always majorized in modulus by ellm (I. Consequently,
for x and z as in (A.24),

IJKC (z x2+a 2)J,,Q\',+ < e-(Rez) 1 x 2 + 2 elIm pux Re v+l
KzIX2+a2 )E jVI(X)X, - <c3 ReI (,,fX 2V(:2 | < C3 (Z2 + a2)c4 XZ (X2 + a 2-1

< C3X- Re (C- v) .- Re z (,Jx-a2- ),-(Re z- Jim 0I)x
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which gives an estimate companion to (A.21),

E(,X 2 + a2)( J,(#X)XVl < c3 (61)zRe(e /)e(Rezilm/lI)x

for x >_ M'(6 1 ) and 0 < 6 1 < Izl with Rez > 0. (A.26)

Now suppose that z E C+, i.e., that Rez > 11m,31: then, recalling that Rev > -1, so 2Re v + 1 > -1,
inequalities (A.21) and (A.26) show first that the integrand appearing in (A.15) is in L1 (0,no), whence
l(z I a, 3; (, v) is defined. Selecting any zo E C + and applying (A.21) and (A.26) a second time, it is clear
that the modulus of the integrand in (A.15) is majorized by a nonnegative function in Li(0, oo), uniformly
for all z lying in a closed disc contained in C+ and centered at zo; since the function z i-+ Ke(z x2 +a 2)

is continuous (even analytic) in Cp+ for fixed x, Lebesgue's Dominated-Convergence Theorem implies that
Z(. a,,13; , v) is continuous at zo, and so also in all of C+. Moreover, the same estimates imply that,
whenever C is a closed rectifiable path lying in C+T, so that lzI and Re z - hIm,31 are uniformly bounded
below by a positive number for all z on C, Fubini's Theorem can be applied to reverse the order of integration
in fc I(z I a, ,3; (, v) dz, whence Cauchy's Theorem shows that the integral vanishes, and so 2t(. a, 13; , v) is
analytic in C+, by Morera's Theorem. This proves the first two assertions of (i).

In this paragraph, let Re(- v) > 1 hold (as well as Rev > -1), and suppose that Rez = 1Imfl.
Returning to (A.21) and (A.26), it is evident that the integrand in (A.15) is in this case still in Li(O,oo)
when Im13 $ 0 (so that z $ 0), but when Im # = 0 we must stipulate that z $ 0 to obtain the same inclusion.
Thus, I( a,13; ,v) is now defined by (A.15) at all nonzero boundary points of C+. Let us show at this

point that :( I a, ,1; (, v) is continuous in CG \ {O}, in particular, that the same strategy employed to prove
the continuity in C+ also serves to verify that

cc K $ J ,(/3z)zv+1 dz= lim j Kf J(,,3z)z+ dx
° rX 2- (-Z o VfX2) )

(EC \{O}

for Rez = 11m,31 and z $0 when Re( - v-1) > 0. (A.27)

For this, let the nonzero z be fixed, with Re z = 1Im131: obviously, as C approaches z while remaining in
C+ \ {0}, the integrand on the right in (A.27) approaches that appearing on the left, for each positive x.
Further, we again appeal to (A.21) and (A.26), this time to conclude that there exists a nonnegative element
of L1 (0, oo) that majorizes the modulus of the integrand on the right in (A.27), uniformly for all ( lying in the

intersection of C63 with a closed disc centered at z and of radius sufficiently small to exclude the origin. Thus,
the Dominated-Convergence Theorem can be applied again, establishing (A.27). Now the second sentence of
(ii) has been proven except for the equality in (A.18), which shall follow immediately once (A.17) has been
shown to be correct.

Returning to the general case, as a preliminary to proving (A.17) (as well as (A.19) and (A.20)), let us
review the properties of the function defined by the expression appearing on the right in that equality. Let
Dp be the subset of C defined by

D3 := { z E C I arg(z2 +132) = } U{iU3,-i3} = { z E C I Re (z2 + p 2 ) < O and Im (Z2 + 132 ) = };

then D3 is closed, and z -- z 2 +12 is analytic in C \ Dp (recall that V4(i denotes the principal branch
of the square-root function, analytic in the plane cut by removal of the nonpositive points on the real axis).
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Now, the set D/3 is found as the collection of all z = a + iy (x, y E R) lying in the closed set described by
the inequality

2 _ y2 < (Im3) 2-(Re3) 2

and on the hyperbola determined by the condition

y = -Re31Im,3

(which degenerates to coincide with the real and imaginary axes when Re13m1 = 0). Thus, when Im13 = 0,
so that 3 is real and positive, Do lies on the imaginary axis (just the boundary of C+ in that case), comprising
those points ib with 1bI > 1; if Im,6 : 0, D# is contained within the closed strip { z I lRezh < f1m131 } and
meets the boundary of that strip only at the two points ±i3, while touching the boundary of C+ at a single
point (viz., -i:3 if Im,3 > 0, i:3 if Im13 < 0). In either case, we find that C,+ C C \ Dp. Consequently, the

restriction to Cp+ of the function z i-- z 2 + 132 is analytic throughout C+, and it is easy to see that the

restriction can be extended by continuity to all of Cp+; in fact, if Im13 $ 0, the values of the continuous

extension are again given simply by 2 1, while for Im13 = 0 these values are found to be, recalling
that then 3 is assumed positive, and writing z = ib, with b real,

b2, if hbI < d

~q~ i 32 if b > 3 (A.28)

{-ib2 132 if b <-13.

Next, since IK_,_1 is analytic in the open set obtained by deleting from C the nonpositive portion of the
real axis, while /z2 +12 $ 0 and I arg z20+12/ 1 < 7r/2 for z E C \ Dp, by setting(~Z2 + 132'

K(z) =(z ha, 0; v:= halJ 9 K_ -,i(hal lz2 + 12) for z E C \ Dp,

we obtain a function analytic in C \ Dp. Moreover, from what has been said, the restriction a+ := KlC+
is analytic in Cp+ and can be extended continuously to all points of the boundary of Cp+ with the possible
exception of those z on the boundary at which z2 + 12 = 0 (there being one such point if Im1 $ 0, two
if mp3 = 0). The value of the continuous extension of K+ at a point z on the boundary with Z2 + 132 $ 0

is just IC(z) when Im13 $ 0, and in the contrary case when Im13 = 0 can be easily written down by use of
the values supplied in (A.28) for the continuous extension of the restriction of C / C2 +12 to C+. Now,
if Re X > 0 it is easy to check, by using the definition and series expansions for KX (cf., e.g., Ref. A.3, §5.7)
that

lim CXKX(() = 2X1 1r(X),

I argel<-r

and so
of - v -2

iim K(zIa,13; ,v)= v2E22 -v ) when Re ( -v 1) > 0 (A.29)
zEC\Dg

(of course, with r denoting the Gamma function). Thus, when Re (-v - 1) > 0 we conclude that KC+ can
be extended by continuity to all of C+, the value of the extension at the point (if Im13 $ 0) or points (if
Im,3 = 0) z of the boundary at which z2 +132 vanishes being found from (A.29). Finally, the modifications in
these statements necessary to describe the properties of the function z '-* (13 l/zE)K+(z I a,13; , v), z E C+
are obvious; in particular, the origin must be excluded from the boundary points of extended-continuity of
the latter function if Im,3 = 0 and Re d > 0. In fact, when Re (-v - 1) > 0, we do have Re > 0 (since
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Rev > -1), and we find that the values of the continuous extension of this function to the nonzero points
of the boundary of C+ are given by the expressions appearing on the right-hand sides of (A.19) and (A.20),
in the respective cases Im,3 $6 0 and Imp3 = 0.

According to what has been shown, to establish (A.17) it is sufficient to derive the equality for, say, z
real and greater than lIm131; actually, we shall suppose that z lies in the larger set Cp++ C C+ specified by

C+¢+ := {i I Re (C2 ) > (Imf,) 2 and ReC > 0}

and prove that I(z I a, 13; S, v) is then given by (/"/z()K(z I a, 13; S, v). For this, we require the evaluation of
two auxiliary integrals. First, from Ref. A.6, p. 146, Eq. (29), we have

L - ( 2(4,-))r =2 *2 ) K 1(C/2CI/2 ) for ReCi > 0, Re( 2 > 0, and E C. (A.30)

Also, in Ref. A.4, p. 394, Eq. 13.3(4), we find

Jo Ju(lr)e-C2 2 rv+i dT = _e-_2 /(4C2) for C, $ 0, Re (2 > 0, and Rev > -1. (A.31)

Select and fix any z E C++. Then we can apply (A.30) with CI = 1, (2 = Z2 (Z2 + a2 ) (for z E R), and

g = -S to get (by recalling that K-C = Ke and noting that VIZ = z, (z2(X2 + a2)) / = Vi , and
(Z2(a,2 + a2)/4)(/2 = 2(z ( )e) hold because Rez > 0)

K&(z 2 + a2 ) 2" Jo 0e T (z2(.2+a2)/(4r))r- dT,

and so

Z Ia, A9; en v) = 2C+' )cc {)cc e 7 (z2(.2+a2)/(4r)) T-C-' dr} J,(a)aV+i do

Z cc(ic (.2 2= e+i I0 t]; eJz2 :r2/(4)J',(13x)xv+ dx} eCr a /( 4T)) -C-' dr, (A.32)

in which we have used Fubini's Theorem to reverse the order of integration, a step that we shall justify
presently. We apply (A.31) for the evaluation of the inner integral in (A.32) for each positive 7 (a computation
that is permissible because here Re (z2 ) > 0 and Rev > -1) and obtain (2v+11,81/z21/+2)rv+le- //z, B whence

(z I a, 3; i, v) = 2"-Cvz -2v- 2 | e((z 2+/3 2)/, 2 )T_ (22a2/(4T)) rT-E d-. (A.33)

Now we observe that the inclusion z e C ++ ensures not only that z and z 2 have positive real parts but also
that the same is true of z2 +3 2 and (Z2 +1 2 )/Z2 (and so each number has principal argument in (-ir/2, 7r/2)).
Indeed, we find

Re (z2 +132) = Re (z2) _ (Im8)2 + (Re 'a)2 > 0,

and

Re (z+2 ) = {{Re(z 2)+(Re 3)2}{Re (z2) _ (Im13)2 } + {Im (z2) + Re 1Im3} 2} > 0

(note that the second of these inequalities provides an independent check on the existence of the integral in
(A.33)). This shows, firstly, that to evaluate the integral on the right-hand side of (A.33) it is permissible to
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apply (A.30) a second time by taking Ci = (z2 + 132 )/Z2, C2 = z2 a2 , and ( = v - ( + 1, and, secondly, that
the following computations are correct: ( /2 = z + # 2/Z, 1/2 = 1ahz, and

( >(v-6+1)/2 a2Z2 Z2 (V-(+1)/2 2 2 ( hl v13

k4¢1J V 4 z2 +132) z2-2V-2 V lal 

In this manner, the equality in (A.17) clearly results from (A.33) and (A.30), and so the proof of (A.17)
is complete, modulo the demonstration that the second equality in (A.32) is correct. Taking up this latter
question, we first write

jctoo lcc (e2(.2+a2)/(4T)) ri--' (13x)xv+' d+1 da

= jcc {Icc _-(Re (.2)(x2+a2)/(4r)) r-Re -1 dr} hJ',(1X)IRe v+ dx

= 2Re+1j | R Re(z )(a2+a )) hJ' (Wx)hIzRev+i dX, (A.34)
o (/Re(z2 )(X2 + a2) )Re

having once more applied (A.30) to obtain the second equality here. To show that the nonnegative integrand
appearing in the final integral in (A.34) is in LI(0, oo), we return to (A.21) and (A.26), replacing there ( by
Re e and z by /e(z 2 ), to conclude that for any positive M there can be found c2 (M) such that

KRe( Rez)C a2) )Rev1 MX2e+( Re, j iz )(2 +a ))Re IJ J, (1)|Re(+i < c2 (M)a, 2Re_" for O < x < M, (A.35)

and that there exists a sufficiently large positive M' for which we have an estimate of the form

KRe ~( Re)z2 )(ev + a2))( Re(Z2)(X2 a2))Rec LJ'(13x)lXRe +l < C3axR e( Re(z)Im/l)x for x > M'. (A.36)

Since z E C++, we have IRe(Z2 ) - 1m131 > 0, whence it follows from (A.35) and (A.36) that the final
integral in (A.34) is finite, and this justifies the application of Fubini's Theorem upon which the second
equality in (A.32) is based. This completes the proof of (A.17), and so also of (i).

Considering once more the case in which Re(- v - 1) > 0, since the limiting relation (A.18) is
an immediate consequence of (A.17) and (A.27), now the explicit forms (A.19) and (A.20) of (A.18) in
the respective cases Im1 54 0 and Im13 = 0 follow from our discussion of the properties of the function
z --* (O3v/zE)K+(z I a,13; e, v), z E C+, in which we supplied the details necessary for checking that the
expressions on the right in (A.19) and (A.20) give the values of the continuous extension of this function to
the nonzero points of the boundary of C+. i
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